#$&* course Mth 279 8/6 Query 32 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Let f(t) = sin(t) for 0 <= t < pi, f(t) = 0 for pi <= t < 2 pi, with f(t + 2 pi) = f(t). Graph this periodic function and find its Laplace transform. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Graph is of positive humps starting at L{f(t)} = int(e^(-st)sin(t) + int(0e^(-st)) I’m at a loss of how to finish solving this problem.???
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the function whose Laplace transform is (s^2 - s) / s^3 + e^(-s) / (s ( 1 - e^(-s) ). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: F(s) = (s^2 - s) / s^3 + e^(-s) / (s ( 1 - e^(-s) ) L^-1{(s^2-s)/s^3} partial fractions A/s + B/s^2 + C/s^3 s^2-s = As^2 + Bs + C A=1 B=-1 C=0 F(s) = 1/s -1/s^2 L^(-1){1/s} = 1 L^(-1){1/s^2)} = -t f(t) = 1-t L^(-1){e^-s/(s(1-e^-3))} = L^(-1){e^-s/s} * L^(-1){1/(1-e^(-3))}
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!