query_03

#$&*

course phy 201

9/16 11:15 pm

If your solution to stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

003. `Query 3

*********************************************

Question: What do the coordinates of two points on a graph of position vs. clock time tell you about the motion of the object? What can you reason out once you have these coordinates?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

They tell you how far the object moved within a period of time. Once you have these two quantities, you can reason out what the average velocity is.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: The coordinates a point on the graph include a position and a clock time, which tells you where the object whose motion is represented by the graph is at a given instant. If you have two points on the graph, you know the position and clock time at two instants.

Given two points on a graph you can find the rise between the points and the run.

On a graph of position vs. clock time, the position is on the 'vertical' axis and the clock time on the 'horizontal' axis.

• The rise between two points represents the change in the 'vertical' coordinate, so in this case the rise represents the change in position.

• The run between two points represents the change in the 'horizontal' coordinate, so in this case the run represents the change in clock time.

The slope between two points of a graph is the 'rise' from one point to the other, divided by the 'run' between the same two points.

• The slope of a position vs. clock time graph therefore represents rise / run = (change in position) / (change in clock time).

• By the definition of average velocity as the average rate of change of position with respect to clock time, we see that average velocity is vAve = (change in position) / (change in clock time).

• Thus the slope of the position vs. clock time graph represents the average velocity for the interval between the two graph points.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question:

Pendulums of lengths 20 cm and 25 cm are counted for one minute. The counts are respectively 69 and 61. To how many significant figures do we know the difference between these counts?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

1 significant figure.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question:

What are some possible units for position? What are some possible units for clock time? What therefore are some possible units for rate of change of position with respect to clock time?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

Position: centimeters, meters, inches, millimeters, kilometers. Clock time: Seconds, minutes, hours, days. Possible ratios (some):meters/second, millimeters/minute, miles/day, meters/day, meters/hour, centimeters/minute.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: What fraction of the Earth's diameter is the greatest ocean depth?

What fraction of the Earth's diameter is the greatest mountain height (relative to sea level)?

On a large globe 1 meter in diameter, how high would the mountain be, on the scale of the globe? How might you construct a ridge of this height?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The greatest mountain height is a bit less than 10 000 meters. The diameter of the Earth is a bit less than 13 000 kilometers.

Using the round figures 10 000 meters and 10 000 kilometers, we estimate that the ratio is 10 000 meters / (10 000 kilometers). We could express 10 000 kilometers in meters, or 10 000 meters in kilometers, to actually calculate the ratio. Or we can just see that the ratio reduces to meters / kilometers. Since a kilometer is 1000 meters, the ratio is 1 / 1000.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery Principles of Physics and General College Physics: Summarize your solution to the following:

Find the sum

1.80 m + 142.5 cm + 5.34 * 10^5 `micro m

to the appropriate number of significant figures.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1.80 m + 1.425 m + 0.534 m = 3.759 meters. Only good to three significant figures. 3.67 meters.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** 1.80 m has three significant figures (leading zeros don't count, neither to trailing zeros unless there is a decimal point; however zeros which are listed after the decimal point are significant; that's the only way we have of distinguishing, say, 1.80 meter (read to the nearest .01 m, i.e., nearest cm) and 1.000 meter (read to the nearest millimeter).

Therefore no measurement smaller than .01 m can be distinguished.

142.5 cm is 1.425 m, good to within .00001 m.

5.34 * `micro m means 5.34 * 10^-6 m, so 5.34 * 10^5 micro m means (5.34 * 10^5) * 10^-6 meters = 5.34 + 10^-1 meter, or .534 meter, accurate to within .001 m.

Then theses are added you get 3.759 m; however the 1.80 m is only good to within .01 m so the result is 3.76 m. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

*********************************************

Question:

A ball rolls from rest down a book, off that book and onto another book, where it picks up additional speed before rolling off the end of that book.

Suppose you know all the following information:

• How far the ball rolled along each book.

• The time interval the ball requires to roll from one end of each book to the other.

• How fast the ball is moving at each end of each book.

How would you use your information to determine the clock time at each of the three points, if we assume the clock started when the ball was released at the 'top' of the first book?

How would you use your information to sketch a graph of the ball's position vs. clock time?

(This question is more challenging that the others): How would you use your information to sketch a graph of the ball's speed vs. clock time, and how would this graph differ from the graph of the position?

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

If you knew the time required to cross each book, then the three points are easy. Assume it takes clock time X to cover the first book, and clock time Y to cover the second book. The initial clock time is zero. The second clock time is X. The third clock time is X + Y. Once we have discovered these times, we can begin to sketch a graph. The graph would start at the origin, because the ball is starting from rest. Then, we can take time X at the x axis, and the y position will the distance covered. If we know how fast the ball was moving at the end of each book, then we can find the average velocity by taking the speed at rest vs. the speed at the end of the book. Once we have the average velocity, we can find the distance travelled since we know two of the three quantities in the average acceleration equation. That will give us the y values of the x-positions we already have.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `qQuery Principles of Physics and General College Physics: Summarize your solution to the following:

Find the sum

1.80 m + 142.5 cm + 5.34 * 10^5 `micro m

to the appropriate number of significant figures.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1.80 m + 1.425 m + 0.534 m = 3.759 meters. Only good to three significant figures. 3.67 meters.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** 1.80 m has three significant figures (leading zeros don't count, neither to trailing zeros unless there is a decimal point; however zeros which are listed after the decimal point are significant; that's the only way we have of distinguishing, say, 1.80 meter (read to the nearest .01 m, i.e., nearest cm) and 1.000 meter (read to the nearest millimeter).

Therefore no measurement smaller than .01 m can be distinguished.

142.5 cm is 1.425 m, good to within .00001 m.

5.34 * `micro m means 5.34 * 10^-6 m, so 5.34 * 10^5 micro m means (5.34 * 10^5) * 10^-6 meters = 5.34 + 10^-1 meter, or .534 meter, accurate to within .001 m.

Then theses are added you get 3.759 m; however the 1.80 m is only good to within .01 m so the result is 3.76 m. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

*********************************************

Question:

A ball rolls from rest down a book, off that book and onto another book, where it picks up additional speed before rolling off the end of that book.

Suppose you know all the following information:

• How far the ball rolled along each book.

• The time interval the ball requires to roll from one end of each book to the other.

• How fast the ball is moving at each end of each book.

How would you use your information to determine the clock time at each of the three points, if we assume the clock started when the ball was released at the 'top' of the first book?

How would you use your information to sketch a graph of the ball's position vs. clock time?

(This question is more challenging that the others): How would you use your information to sketch a graph of the ball's speed vs. clock time, and how would this graph differ from the graph of the position?

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

If you knew the time required to cross each book, then the three points are easy. Assume it takes clock time X to cover the first book, and clock time Y to cover the second book. The initial clock time is zero. The second clock time is X. The third clock time is X + Y. Once we have discovered these times, we can begin to sketch a graph. The graph would start at the origin, because the ball is starting from rest. Then, we can take time X at the x axis, and the y position will the distance covered. If we know how fast the ball was moving at the end of each book, then we can find the average velocity by taking the speed at rest vs. the speed at the end of the book. Once we have the average velocity, we can find the distance travelled since we know two of the three quantities in the average acceleration equation. That will give us the y values of the x-positions we already have.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Your work looks good. Let me know if you have any questions. &#