#$&* course Mth 279 6/24 10:00 Solve each equation:*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Good. Danielle, student, watched lectures and taught me after time constraints. ------------------------------------------------ Self-critique rating: ********************************************* Question: 2. y ' + t y = 3 t YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: p(t) = t int(p(t)) = t^2/2 y = Ce^(-t^2/2) + e^(-t^2/2) * int(e^(t^2/2)) *3t dt do u sub for integral let u= t^2 du= 2t y = Ce^(-t^2/2) + e^(-t^2/2) * 3/2int(e^.5u) du y = Ce^(-t^2/2) + e^(-t^2/2) * (3/2)*2e^(t^2/2) simplifying expression to: y = Ce^(-t^2/2) + 3 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): slowly understanding process and general form ------------------------------------------------ Self-critique rating: ********************************************* Question: 3. y ' - 4 y = sin(2 t) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: p(t) = -4 therefore int(p(t)) = -4t y = Ce^(4t) + e^(4t)*int(e^(-4t)*sin(2t)) use integration by parts twice u = sin(2t) du = 2cos(2t) dv=e^(-4t) v= (-1/4)e^(-4t) uv - int(v du) sin(2t)(-1/4)e^(-4t) - int((-1/4)e^(-4t)*2cos(2t) dt sin(2t)(-1/4)e^(-4t) + .5int(e^(-4t)*cos(2t))dt u=cos(2t) du=-2sin(2t) dv=e^(-4t) v=(-1/4)e^(-4t) sin(2t)(-1/4)e^(-4t) + .5((cos(2t))((-1/4)e^(-4t)) - int((-1/4)e^(-4t)*-2sin(2t)))dt therefore: int(e^(-4t)*sin(2t)) = -.25e^(-4t)sin(2t) + (1/8)e^(-4t)cos(2t) - .25int(e^(-4t)*sin(2t)) adding .25int(e^(-4t)*sin(2t)) to both sides you get: (5/4)int(e^(-4t)*sin(2t)) = -.25e^(-4t)sin(2t) + (1/8)e^(-4t)cos(2t) = 4/5(-.25e^(-4t)sin(2t) + (1/8)e^(-4t)cos(2t)) = (-1/5)e^(-4t)*sin(2t) - (1/10)e^(-4t)*cos(2t) Therefore: y = Ce^(4t) + e^(4t)*((-1/5)e^(-4t)*sin(2t) - (1/10)e^(-4t)*cos(2t)) distributing e^(4t) through y = Ce^(4t) - (1/5)sin(2t) - (1/10)cos(2t) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Hard integral. Technique was new. Is there another way to go about solving this problem/integral???
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Easy in comparison to number 3 ------------------------------------------------ Self-critique rating: ********************************************* Question: 5. y ' + 3 y = 3 + 2 t + e^t, y(1) = e^2 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: p(t) = 3 int(p(t))= 3t y = Ce^(-3t) + e^(-3t)*int(e^(3t)*(3+2t+e^t))dt int(e^(3t)*(3+2t+e^t))dt distribute e^(3t) through and then make three separate integrals int(3e^(3t))dt + 2int(te^(3t))dt + int(e^(4t))dt middle integral done by parts where u = t du= dt dv=e^(3t) v=(1/3)e^(3t) 3((1/3)e^(3t) + (1/3)te^(3t) - (1/9)e^(3t) + (1/4)e^(4t) y = Ce^(-3t) + e^(-3t)(e^(3t) + (2/3)te^(3t) - (2/9)e^(3t) + (1/4)e^(4t)) y = Ce^(-3t) + (7/9) + (2/3)t + (1/4)e^t e^2 = Ce^(-3) + (7/9) + (2/3) + (1/4)e^1 Ce^(-3) = e^2 - (13/9) - (1/4)e C = e^5 - (14/9)e^3 - (1/4)e^4 y = (e^5 - (14/9)e^3 - (1/4)e^4)*e^(-3t) + (7/9) + (2/3)t + (1/4)e^t confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 0
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Unsure if final answer is correct. ------------------------------------------------ Self-critique rating: ********************************************* Question: 6. The general solution to the equation y ' + p(t) y = g(t) is y = C e^(-t^2) + 1, t > 0. What are the functions p(t) and g(t)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = Ce^(-t^2)+1 t>0 general y = Ce^(-int(p(t)) + e^(-int(p(t)))*int(e^(int(p(t))) * g(t) -int(p(t)) = -t^2 take derivative to find p(t) -p(t) = - 2t p(t) = 2t y = Ce^(-t^2) + e^(-t^2)*int(e^(t^2))*g(t) dt We know that: e^(-t^2)*int(e^(t^2))*g(t) = 1 Take derivative of both sides int(e^(t^2)g(t))dt = e^(t^2) e^(t^2)g(t) = 2te^(t^2) g(t) = (2t*e^(t^2))/(e^(t^2)) g(t) = 2t confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!