#$&* course Mth 279 6/24 10:00 Section 2.4.*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 2. What annual rate of return is required if an investment of $1000 is to reach $3000 in 15 years? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: P = Ae^(kt) 3000 = 1000e^(15k) 3 = e^(15k) ln(3) = 15k k = ln(3)/15 = .07 = 7% confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3. A bacteria colony has a constant growth rate. The population grows from 40 000 to 100 000 in 72 hours. How much longer will it take the population to grow to 200 000? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 1. find rate of growth 100,000 = 40,000e^(72k) 2.5 = e^(72k) ln(2.5) = 72k k = ln(2.5)/72 = .012 = 1.2% 2. find time to grow to 200,000 population 200,000 = 100,000e^(.012t) 2 = e^(.012t) ln(2) = .012t t = 57.7 more hours confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 4. A population experiences growth rate k and migration rate M, meaning that when the population is P the rate at which new members are added is k P, but the rate at they enter or leave the population is M (positive M implies migration into the population, negative M implies migration out of the population). This results in the differential equation dP/dt = k P + M. Given initial condition P = P_0, solve this equation for the population function P(t). **** #$&* In terms of k and M, determine the minimum population required to achieve long-term growth. **** #$&* What migration rate is required to achieve a constant population? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A. dP/dt = P’ = kP + M P’ - kp = M p(t) = -k g(t) = M int(-k) = -kt P(t) = Ce^(kt) + e^(kt)*int(e^(-kt)*M) P(t) = Ce^(kt) + e^(kt)*M((-e^(-kt))/k) P(t) = Ce^(kt) - (M/k) B. The increase of the population, e^(kt), must be greater than (M/k) to achieve a minimum population for long term grown. C. The migration rate M must equal and opposite the rate of population increase kP, to achieve a constant population. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 0
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Really no idea what this question is getting at. ------------------------------------------------ Self-critique rating: ********************************************* Question: 5. Suppose that the migration in the preceding occurs all at once, annually, in such a way that at the end of the year, the population returns to the same level as that of the previous year. How many individuals migrate away each year? **** #$&* How does this compare to the migration rate required to achieve a steady population, as determined in the preceding question? **** #$&* YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A) The same number that migrate in B) |m| must equal |kP| confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 0
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 6. A radioactive element decays with a half-life of 120 days. Another substance decays with a very long half-life producing the first element at what we can regard as a constant rate. We begin with 3 grams of the element, and wish to increase the amount present to 4 grams over a period of 360 days. At what constant rate must the decay of the second substance add the first? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Half life = ln(2)/k 120 = ln(2)/k k = ln(2)/120 = 0.006 dQ/dt = (-kQ) dQ/dt = (-.006 * 3) dQ/dt = -.018 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Not really sure if this is correct. Not sure if -.018 is every 120 days or every day because when we found k the half life was 120 days. ------------------------------------------------ Self-critique rating:" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!