#$&* course Mth 279 6/24 10:00 Query 05 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.10. Solve 3 y^2 y ' + 2 t = 1 with initial condition y(0) = -1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 3y^2*(dy/dt) + 2t = 1 3y^2 * (dy/dt) = 1 - 2t 3y^2 dy = (1-2t) dt integrate both sides 3y^3/3 = t - 2t^2/2 + C y^3 = t - t^2 +C y = (t - t^2 + C)^(1/3) -1 = (0-0^2 + C)^(1/3) C = -1 y(t) = (t -t^2 -1)^(1/3) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.18. State a problem whose implicit solution is given by y^3 + t^2 + sin(y) = 4, including a specific initial condition at t = 2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y^3 + sin(y) = 4 - t^2 take derivatives of both sides d/dt(y^3 + sin(y) = d/dt(4 - t^2) y’(3y^2 + cos(y)) = -2t y’ = (-2t)/(3y^2 + cos(y)) when t = 2 y^3 + (2)^2 + sin(y) = 4 y^3 + sin(y) = 0 y^3 = -sin(y) y = 0 so y(2) = 0 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.24. Solve the equation y ' = (y^2 + 2 y + 1) sin(t) and determine the t interval over which the solution exists. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: dy/dt = (y^2 + 2y +1)sin(t) 1/(y+1)^2 dy = sin(t) dt integrate left side use u sub letting u = y + 1 therefore du = 1 dy int(1/u^2)du = -u^-1 so we get -1/(y+1) = -cos(t) +C y+1 = 1/(cos(t) +C) y = (1/(cos(t) + C)) -1 ; cos(t) + C can’t equal 0
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.28. Match the graphs of the solution curves with the equations y ' = - y^2, y ' = y^3 and y ' = y ( 4 - y). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 1) y’ = -y^2 as y increases the slope of y’ will be a greater negative slope 2) y’ = y^3 as y increases the slope will be positive and will be increasing 3) y’ = y(4-y) at y = 0 and y=4 the slope would be 0 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): No graphs were provided to match so I tried to explain how the graphs would might look ------------------------------------------------ Self-critique rating:" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!