#$&* course Mth 279 7/22 Query 13 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the largest interval on which the equation t y '' + sin(2 t) / (t^2 - 9) y ' + 2 y = 0 has a solution, with the initial conditions y(1) = 0, y ' (1) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: ty’’ + sin(2t)/(t^2 - 9) y’ + 2y = 0 divide by t y’’ + sin(2t)/(t(t^2 -9)) y’ + 2y/t = 0 p = sin(2t)/(t(t^2 - 9)); q = 2y/t and g = 0 to find where p and q are discontinuous you find where the denominators are = 0 for p: t(t^2 - 9) = 0 t = 0; t = 3, and t = -3 for q: t= 0 so find the largest interval when t = 1 we would have the intervals of: (-infinity, -3) (-3,0) (0,3) (3,infinity) so t=1 falls between (0,3) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Tell whether each of the following is increasing or decreasing, and whether concave down or concave up, in the vicinity of the initial point: y '' + y = 2 - sin(t), y(0) = 1, y ' (0) = -1. y '' + y = - 2 t, y(0) = 1, y ' (0) = -1. y '' - y = t^2, y(0) = 1, y ' (0) = 1. y '' - y = - 2 cos(t), y(0) = 1, y ' (0) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A) y’’ + y = 2 - sin(t) slope = -1 so decreasing y’’ = -1 + 2 -sin(0) = 1 so concave up B) y’’ + y = -2t initial point (0,1) with a slope of -1, so function is decreasing. y’’ = -1 - 2(0) = -1 with a neg second derivative the function is concave down C) y’’ -y = t^2 slope = 1 so function is increasing y’’ = y + t^2 = 1 + 0^2 = 1 so function is concave up D) y’’ - y = -2cos(t) slope =1 so increasing y’’ = 1 - 2cos(0) = 1 - 2(1) = -1 so concave down confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:"