#$&* course Mth 279 7/22 Query 14 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Decide whether y_1 = e^(-t) and y_2 = 2 e^(1 - t) are solutions to the equation y '' + 2 y ' + y = 0. If so determine whether the two solutions are linearly independent. If the solutions are linearly independent then find the general solution, as well as a particular solution for which y (0) = 1 and y ' (0) = 0. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 1) sub in y_1 and y_2 y_1 = e^-t ; y’_1 = -e^-t ; y’’_1 = e^-t (e^-t) + 2(-e^-t) + e^-t = 0? 2e^-t - 2e^-t = 0 yes solution y_2 = 2e^(1-t); y’_2 = -2e^(1-t) ; y’’_2 = 2e^(1-t) (2e^(1-t)) + 2(-2e^(1-t)) + 2e^(1-t) = 0? 4e^(1-t) - 4e^(1-t) = 0 yes solution 2) linearly independent? W(t) = | e^-t 2e^(1-t); -e^-t -2e^(1-t)| = = (-2e^-t*e^(1-t)) - (-2e^-t*e^(1-t)) = 0 Not linearly independent confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Suppose y_1 and y_2 are solutions to the equation y '' + alpha y ' + beta y = 0 and that y_1 = e^(2 t). Suppose also that the Wronskian is e^(-t). What are the values of alpha and beta? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y_1 = e^(2t) ; y’_1 = 2e^(2t) ; y’’_1 = 4e^(2t) 1) Plug into equation 4e^(2t) + a(2e^(2t)) + b(e^(2t) = 0 2) factor out e^(2t) e^(2t) (4 + 2a + b) = 0 divide e^(2t) over 4 + 2a + b = 0 (one soln - use wronskian to find y_2) 3) W(t) = |e^(2t) y_2; 2e^(2t) y’_2| = e^(2t)y’_2 - y_2(2e^(2t)) = e^-t e^(2t)y’_2 - 2e^(2t)y_2 = e^-t y’ - 2y = e^(-3t) p(t) = -2 int(p(t)) = -2t y_2 = Ce^(2t) + e^(2t)int(e^(-2t)*e^(-3t))
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!