Orientation Hello

course Mth 271

Orientation Hello.

assignment #002

002. Describing Graphs

qa initial problems

08-22-2008

......!!!!!!!!...................................

10:01:23

`q001. You will frequently need to describe the graphs you have constructed in this course. This exercise is designed to get you used to some of the terminology we use to describe graphs. Please complete this exercise and email your work to the instructor. Note that you should do these graphs on paper without using a calculator. None of the arithmetic involved here should require a calculator, and you should not require the graphing capabilities of your calculator to answer these questions.

Problem 1. We make a table for y = 2x + 7 as follows: We construct two columns, and label the first column 'x' and the second 'y'. Put the numbers -3, -2, -1, -, 1, 2, 3 in the 'x' column. We substitute -3 into the expression and get y = 2(-3) + 7 = 1. We substitute -2 and get y = 2(-2) + 7 = 3. Substituting the remaining numbers we get y values 5, 7, 9, 11 and 13. These numbers go into the second column, each next to the x value from which it was obtained. We then graph these points on a set of x-y coordinate axes. Noting that these points lie on a straight line, we then construct the line through the points.

Now make a table for and graph the function y = 3x - 4.

Identify the intercepts of the graph, i.e., the points where the graph goes through the x and the y axes.

......!!!!!!!!...................................

RESPONSE -->

The x intercept is approximately 1.3

The y intercept is -4

confidence assessment: 3

.................................................

......!!!!!!!!...................................

10:05:46

The graph goes through the x axis when y = 0 and through the y axis when x = 0.

The x-intercept is therefore when 0 = 3x - 4, so 4 = 3x and x = 4/3.

The y-intercept is when y = 3 * 0 - 4 = -4. Thus the x intercept is at (4/3, 0) and the y intercept is at (0, -4).

Your graph should confirm this.

......!!!!!!!!...................................

RESPONSE -->

My graph did confirm this. I stated that my x intercept as a decimal rather than a fraction and was slightly off, however, my y intercept was correct.

self critique assessment: 3

.................................................

......!!!!!!!!...................................

10:07:48

`q002. Does the steepness of the graph in the preceding exercise (of the function y = 3x - 4) change? If so describe how it changes.

......!!!!!!!!...................................

RESPONSE -->

No, the slope does not change. This graph forms a straight line.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

10:08:18

The graph forms a straight line with no change in steepness.

......!!!!!!!!...................................

RESPONSE -->

My answer was correct in that there is no change in the slope.

self critique assessment: 3

.................................................

......!!!!!!!!...................................

10:11:01

`q003. What is the slope of the graph of the preceding two exercises (the function ia y = 3x - 4;slope is rise / run between two points of the graph)?

......!!!!!!!!...................................

RESPONSE -->

The slope of this graph is 3.

confidence assessment: 2

.................................................

......!!!!!!!!...................................

10:13:45

Between any two points of the graph rise / run = 3.

For example, when x = 2 we have y = 3 * 2 - 4 = 2 and when x = 8 we have y = 3 * 8 - 4 = 20. Between these points the rise is 20 - 2 = 18 and the run is 8 - 2 = 6 so the slope is rise / run = 18 / 6 = 3.

Note that 3 is the coefficient of x in y = 3x - 4.

Note the following for reference in subsequent problems: The graph of this function is a straight line. The graph increases as we move from left to right. We therefore say that the graph is increasing, and that it is increasing at constant rate because the steepness of a straight line doesn't change.

......!!!!!!!!...................................

RESPONSE -->

I understand this concept.

self critique assessment: 3

.................................................

......!!!!!!!!...................................

10:20:55

`q004. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = 0 and x = 3.

Would you say that the graph is increasing or decreasing?

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

......!!!!!!!!...................................

RESPONSE -->

The graph is increasing

The steepness of the graph does change. As the x value approaches 0, the points become closer to the y axis

Increasing at an increasing rate

confidence assessment: 2

.................................................

......!!!!!!!!...................................

10:22:22

Graph points include (0,0), (1,1), (2,4) and (3,9). The y values are 0, 1, 4 and 9, which increase as we move from left to right.

The increases between these points are 1, 3 and 5, so the graph not only increases, it increases at an increasing rate

STUDENT QUESTION: I understand increasing...im just not sure at what rate...how do you determine increasing at an increasing rate or a constant rate?

INSTRUCTOR RESPONSE: Does the y value increase by the same amount, by a greater amount or by a lesser amount every time x increases by 1?

In this case the increases get greater and greater. So the graph increases, and at an increasing rate. *&*&.

......!!!!!!!!...................................

RESPONSE -->

I kind of took a guess on the rate, but got it correct. Once I looked at the information that I had on my table and graph, it seemed sort of evident what it was

self critique assessment: 3

.................................................

......!!!!!!!!...................................

10:26:19

`q005. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = -3 and x = 0.

Would you say that the graph is increasing or decreasing?

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

......!!!!!!!!...................................

RESPONSE -->

The graph is decreasing

The steepness of the graph does change in the exact same way that the previous graph did. As the x values approach 0, the points become closer to the y axis.

The graph is decreasing at a decreasing rate

confidence assessment: 2

.................................................

......!!!!!!!!...................................

10:27:16

From left to right the graph is decreasing (points (-3,9), (-2,4), (-1,1), (0,0) show y values 9, 4, 1, 0 as we move from left to right ). The magnitudes of the changes in x from 9 to 4 to 1 to 0 decrease, so the steepness is decreasing.

Thus the graph is decreasing, but more and more slowly. We therefore say that the graph is decreasing at a decreasing rate.

......!!!!!!!!...................................

RESPONSE -->

I took a guess on the rate again, but again got it correct.

self critique assessment: 2

.................................................

......!!!!!!!!...................................

10:31:20

`q006. Make a table of y vs. x for y = `sqrt(x). [note: `sqrt(x) means 'the square root of x']. Graph y = `sqrt(x) between x = 0 and x = 3.

Would you say that the graph is increasing or decreasing?

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

......!!!!!!!!...................................

RESPONSE -->

The graph is increasing

The steepness does change. As the graph gets farther away from the y axis, the graph starts to level out

Increasing at a decreasing rate

confidence assessment: 3

.................................................

......!!!!!!!!...................................

10:32:07

If you use x values 0, 1, 2, 3, 4 you will obtain graph points (0,0), (1,1), (2,1.414), (3. 1.732), (4,2). The y value changes by less and less for every succeeding x value. Thus the steepness of the graph is decreasing.

The graph would be increasing at a decreasing rate.

If the graph respresents the profile of a hill, the hill starts out very steep but gets easier and easier to climb. You are still climbing but you go up by less with each step, so the rate of increase is decreasing.

If your graph doesn't look like this then you probably are not using a consistent scale for at least one of the axes. If your graph isn't as desribed take another look at your plot and make a note in your response indicating any difficulties.

......!!!!!!!!...................................

RESPONSE -->

I understand this problem completely

self critique assessment: 3

.................................................

......!!!!!!!!...................................

10:35:54

`q007. Make a table of y vs. x for y = 5 * 2^(-x). Graph y = 5 * 2^(-x) between x = 0 and x = 3.

Would you say that the graph is increasing or decreasing?

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

......!!!!!!!!...................................

RESPONSE -->

Decreasing

The steepness does change. As the graph approaches the x axis, the steepness decreases

decreasing at a constant rate

confidence assessment: 2

.................................................

......!!!!!!!!...................................

10:38:18

** From basic algebra recall that a^(-b) = 1 / (a^b).

So, for example:

2^-2 = 1 / (2^2) = 1/4, so 5 * 2^-2 = 5 * 1/4 = 5/4.

5* 2^-3 = 5 * (1 / 2^3) = 5 * 1/8 = 5/8. Etc.

The decimal equivalents of the values for x = 0 to x = 3 will be 5, 2.5, 1.25, .625. These values decrease, but by less and less each time.

The graph is therefore decreasing at a decreasing rate. **

......!!!!!!!!...................................

RESPONSE -->

I missed the rate on that one. It looked to me as if it was decreasing at a constant rate. I just noticed my problem. I was also looking at the decimal equivalents and saw that they decreased by half each time. Half is a constant, but the amount half is is not a constant. That was my mistake.

self critique assessment: 3

.................................................

......!!!!!!!!...................................

10:39:28

`q008. Suppose you stand still in front of a driveway. A car starts out next to you and moves away from you, traveling faster and faster.

If y represents the distance from you to the car and t represents the time in seconds since the car started out, would a graph of y vs. t be increasing or decreasing?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

......!!!!!!!!...................................

RESPONSE -->

Increasing

The graph is increasing at an increasing rate

confidence assessment: 3

.................................................

......!!!!!!!!...................................

10:40:08

** The speed of the car increases so it goes further each second. On a graph of distance vs. clock time there would be a greater change in distance with each second, which would cause a greater slope with each subsequent second. The graph would therefore be increasing at an increasing rate. **

......!!!!!!!!...................................

RESPONSE -->

For the most part I understand the rate

self critique assessment: 2

.................................................

鹧摔券豿劵棓梀∥

assignment #003

003. PC1 questions

qa initial problems

08-22-2008

......!!!!!!!!...................................

10:46:25

`q001 A straight line connects the points (3, 5) and (7, 17), while another straight line continues on from (7, 17) to the point (10, 29). Which line is steeper and on what basis to you claim your result?

......!!!!!!!!...................................

RESPONSE -->

The line from points (7,17) to (10,29) is steeper.

This conclusion is based on the slopes of the two lines. The line listed above has a slope of 4 whereas the other line has a slope of 3

confidence assessment: 3

.................................................

......!!!!!!!!...................................

10:47:43

The point (3,5) has x coordinate 3 and y coordinate 5. The point (7, 17) has x coordinate 7 and y coordinate 17. To move from (3,5) to (7, 17) we must therefore move 4 units in the x direction and 12 units in the y direction.

Thus between (3,5) and (7,17) the rise is 12 and the run is 4, so the rise/run ratio is 12/4 = 3.

Between (7,10) and (10,29) the rise is also 12 but the run is only 3--same rise for less run, therefore more slope. The rise/run ratio here is 12/3 = 4.

......!!!!!!!!...................................

RESPONSE -->

I had no problems with this question

self critique assessment: 2

.................................................

......!!!!!!!!...................................

10:50:54

`q002. The expression (x-2) * (2x+5) is zero when x = 2 and when x = -2.5. Without using a calculator verify this, and explain why these two values of x, and only these two values of x, can make the expression zero.

......!!!!!!!!...................................

RESPONSE -->

When x = 2, the quantity (x-2) in the expression becomes 0 and when multiplied to the remainder of the expression gives an answer of 0

When x = -2.5 the quantity (2x+5) in the expression becomes 0 and when multiplied to the remainder of the expression gives an answer of 0

confidence assessment: 3

.................................................

......!!!!!!!!...................................

10:51:23

If x = 2 then x-2 = 2 - 2 = 0, which makes the product (x -2) * (2x + 5) zero.

If x = -2.5 then 2x + 5 = 2 (-2.5) + 5 = -5 + 5 = 0.which makes the product (x -2) * (2x + 5) zero.

The only way to product (x-2)(2x+5) can be zero is if either (x -2) or (2x + 5) is zero.

Note that (x-2)(2x+5) can be expanded using the Distributive Law to get

x(2x+5) - 2(2x+5). Then again using the distributive law we get

2x^2 + 5x - 4x - 10 which simplifies to

2x^2 + x - 10.

However this doesn't help us find the x values which make the expression zero. We are better off to look at the factored form.

......!!!!!!!!...................................

RESPONSE -->

Nailed it!

self critique assessment: 3

.................................................

......!!!!!!!!...................................

10:53:47

`q003. For what x values will the expression (3x - 6) * (x + 4) * (x^2 - 4) be zero?

......!!!!!!!!...................................

RESPONSE -->

x=2 and x= -4

confidence assessment: 2

.................................................

......!!!!!!!!...................................

10:55:29

In order for the expression to be zero we must have 3x-6 = 0 or x+4=0 or x^2-4=0.

3x-6 = 0 is rearranged to 3x = 6 then to x = 6 / 3 = 2. So when x=2, 3x-6 = 0 and the entire product (3x - 6) * (x + 4) * (x^2 - 4) must be zero.

x+4 = 0 gives us x = -4. So when x=-4, x+4 = 0 and the entire product (3x - 6) * (x + 4) * (x^2 - 4) must be zero.

x^2-4 = 0 is rearranged to x^2 = 4 which has solutions x = + - `sqrt(4) or + - 2. So when x=2 or when x = -2, x^2 - 4 = 0 and the entire product (3x - 6) * (x + 4) * (x^2 - 4) must be zero.

We therefore see that (3x - 6) * (x + 4) * (x^2 - 4) = 0 when x = 2, or -4, or -2. These are the only values of x which can yield zero.**

......!!!!!!!!...................................

RESPONSE -->

I looked over -2. I saw that if I plugged 2 into the third quantity listed that it made it zero, however the -2 would have lost the - and would have also worked. I see my mistake

self critique assessment: 3

.................................................

......!!!!!!!!...................................

11:10:32

`q004. One straight line segment connects the points (3,5) and (7,9) while another connects the points (10,2) and (50,4). From each of the four points a line segment is drawn directly down to the x axis, forming two trapezoids. Which trapezoid has the greater area? Try to justify your answer with something more precise than, for example, 'from a sketch I can see that this one is much bigger so it must have the greater area'.

......!!!!!!!!...................................

RESPONSE -->

The trapazoid with points (10,2) and (50,4) has the greater area.

The greatest area that trapazoid A (points (3,5) and (7,9))could have would be 36. I got this number by taking the base and the longest side which were 4 and 9 and plugging them into the area formula. 4*9=36

On the other hand, the smallest area that trapazoid B (points (10,2) and (50,4)) could have would be 80. I got this number by taking the base and the shortest side which were 40 and 2 and plugging them into the area formula. 40*2=80

confidence assessment: 3

.................................................

......!!!!!!!!...................................

11:12:53

Your sketch should show that while the first trapezoid averages a little more than double the altitude of the second, the second is clearly much more than twice as wide and hence has the greater area.

To justify this a little more precisely, the first trapezoid, which runs from x = 3 to x = 7, is 4 units wide while the second runs from x = 10 and to x = 50 and hence has a width of 40 units. The altitudes of the first trapezoid are 5 and 9,so the average altitude of the first is 7. The average altitude of the second is the average of the altitudes 2 and 4, or 3. So the first trapezoid is over twice as high, on the average, as the first. However the second is 10 times as wide, so the second trapezoid must have the greater area.

This is all the reasoning we need to answer the question. We could of course multiply average altitude by width for each trapezoid, obtaining area 7 * 4 = 28 for the first and 3 * 40 = 120 for the second. However if all we need to know is which trapezoid has a greater area, we need not bother with this step.

......!!!!!!!!...................................

RESPONSE -->

I went about it a slightly different way, but still came up with the same answer. Is the way that I went about it acceptable?

self critique assessment: 2

.................................................

......!!!!!!!!...................................

11:19:14

* `q005. Sketch graphs of y = x^2, y = 1/x and y = `sqrt(x) [note: `sqrt(x) means 'the square root of x'] for x > 0. We say that a graph increases if it gets higher as we move toward the right, and if a graph is increasing it has a positive slope. Explain which of the following descriptions is correct for each graph:

As we move from left to right the graph increases as its slope increases.

As we move from left to right the graph decreases as its slope increases.

As we move from left to right the graph increases as its slope decreases.

As we move from left to right the graph decreases as its slope decreases.

......!!!!!!!!...................................

RESPONSE -->

for the first graph y=x^2, as we move from left to right the graph increases as the slope increases

graph y=1/x, as we move from left to right the graph decreases as the slope decreases

graph y= sqrt(x), as we move from left to right the graph increases as the slope decreases

self critique assessment: 3

.................................................

......!!!!!!!!...................................

11:20:18

For x = 1, 2, 3, 4:

The function y = x^2 takes values 1, 4, 9 and 16, increasing more and more for each unit increase in x. This graph therefore increases, as you say, but at an increasing rate.

The function y = 1/x takes values 1, 1/2, 1/3 and 1/4, with decimal equivalents 1, .5, .33..., and .25. These values are decreasing, but less and less each time. The decreasing values ensure that the slopes are negative. However, the more gradual the decrease the closer the slope is to zero. The slopes are therefore negative numbers which approach zero.

Negative numbers which approach zero are increasing. So the slopes are increasing, and we say that the graph decreases as the slope increases.

We could also say that the graph decreases but by less and less each time. So the graph is decreasing at a decreasing rate.

For y = `sqrt(x) we get approximate values 1, 1.414, 1.732 and 2. This graph increases but at a decreasing rate.

......!!!!!!!!...................................

RESPONSE -->

I think that I got all of those correct

self critique assessment: 2

.................................................

......!!!!!!!!...................................

11:33:04

`q006. If the population of the frogs in your frog pond increased by 10% each month, starting with an initial population of 20 frogs, then how many frogs would you have at the end of each of the first three months (you can count fractional frogs, even if it doesn't appear to you to make sense)? Can you think of a strategy that would allow you to calculate the number of frogs after 300 months (according to this model, which probably wouldn't be valid for that long) without having to do at least 300 calculations?

......!!!!!!!!...................................

RESPONSE -->

At the end of the first three months I would have 26.62 frogs.

As far as a strategy, after three months I have 26.62 frogs. If I take my initial amount of frogs which was twenty and multiply that by 33.1% for the three months I am left with 26.62 frogs. So if I wanted to know approx how many I would have after three hundred months I could multiply my initial amount of frogs which was twenty by 331% and it should give me an approximate estimate.

20*331% gives me 86.2 which seems kind of small

confidence assessment: 2

.................................................

......!!!!!!!!...................................

11:34:09

At the end of the first month, the number of frogs in the pond would be (20 * .1) + 20 = 22 frogs. At the end of the second month there would be (22 * .1) + 22 = 24.2 frogs while at the end of the third month there would be (24.2 * .1) + 24.2 = 26.62 frogs.

The key to extending the strategy is to notice that multiplying a number by .1 and adding it to the number is really the same as simply multiplying the number by 1.1. 10 * 1.1 = 22; 22 * 1.1 = 24.2; etc.. So after 300 months you will have multiplied by 1.1 a total of 300 times. This would give you 20 * 1.1^300, whatever that equals (a calculator will easily do the arithmetic).

A common error is to say that 300 months at 10% per month gives 3,000 percent, so there would be 30 * 20 = 600 frogs after 30 months. That doesn't work because the 10% increase is applied to a greater number of frogs each time. 3000% would just be applied to the initial number, so it doesn't give a big enough answer.

......!!!!!!!!...................................

RESPONSE -->

I was correct on the first three months, but way off on the strategy

self critique assessment: 2

.................................................

......!!!!!!!!...................................

11:41:40

`q007. Calculate 1/x for x = 1, .1, .01 and .001. Describe the pattern you obtain. Why do we say that the values of x are approaching zero? What numbers might we use for x to continue approaching zero? What happens to the values of 1/x as we continue to approach zero? What do you think the graph of y = 1/x vs. x looks for x values between 0 and 1?

......!!!!!!!!...................................

RESPONSE -->

Because the x values are becoming less and less while still staying positive

.0001, .00001, etc

The values decrease as we continue to approach zero

nonexistant

confidence assessment: 2

.................................................

......!!!!!!!!...................................

11:43:07

If x = .1, for example, 1 / x = 1 / .1 = 10 (note that .1 goes into 1 ten times, since we can count to 1 by .1, getting.1, .2, .3, .4, ... .9, 10. This makes it clear that it takes ten .1's to make 1.

So if x = .01, 1/x = 100 Ithink again of counting to 1, this time by .01). If x = .001 then 1/x = 1000, etc..

Note also that we cannot find a number which is equal to 1 / 0. Deceive why this is true, try counting to 1 by 0's. You can count as long as you want and you'll ever get anywhere.

The values of 1/x don't just increase, they increase without bound. If we think of x approaching 0 through the values .1, .01, .001, .0001, ..., there is no limit to how big the reciprocals 10, 100, 1000, 10000 etc. can become.

The graph becomes steeper and steeper as it approaches the y axis, continuing to do so without bound but never touching the y axis.

This is what it means to say that the y axis is a vertical asymptote for the graph .

......!!!!!!!!...................................

RESPONSE -->

That one was slightly tricky.

self critique assessment: 2

.................................................

......!!!!!!!!...................................

11:49:41

* `q008. At clock time t the velocity of a certain automobile is v = 3 t + 9. At velocity v its energy of motion is E = 800 v^2. What is the energy of the automobile at clock time t = 5?

......!!!!!!!!...................................

RESPONSE -->

V=3t+9 E=800v^2

=3(5)+9 =800(24^2)

=15+9 =800(576)

V=24 E=460,800

The energy of the automobile at clock time t=5 is 460,800

self critique assessment: 3

.................................................

......!!!!!!!!...................................

11:50:47

For t=5, v = 3 t + 9 = (3*5) + 9 = 24. Therefore E = 800 * 24^2 = 460800.

......!!!!!!!!...................................

RESPONSE -->

That was a fairly simple problem. What unit is typically used with energy, ft/lbs?

self critique assessment: 2

.................................................

......!!!!!!!!...................................

11:53:30

* `q009. Continuing the preceding problem, can you give an expression for E in terms of t?

......!!!!!!!!...................................

RESPONSE -->

I'm not sure I understand this question. I think my program slightly messed up or something. I hit next question and it just gave me a dot so I hit it again and this came up. Did it skip something?

self critique assessment: 3

.................................................

......!!!!!!!!...................................

11:55:10

Since v = 3 t + 9 the expression would be E = 800 v^2 = 800 ( 3t + 9) ^2. This is the only answer really required here.

For further reference, though, note that this expression could also be expanded by applying the Distributive Law:.

Since (3t + 9 ) ^ 2 = (3 t + 9 ) * ( 3 t + 9 ) = 3t ( 3t + 9 ) + 9 * (3 t + 9) = 9 t^2 + 27 t + 27 t + 81 = 9 t^2 + 54 t + 81, we get

E = 800 ( 9 t^2 + 54 t + 81) = 7200 t^2 + 43320 t + 64800 (check my multiplication because I did that in my head, which isn't always reliable).

......!!!!!!!!...................................

RESPONSE -->

Oh, I see what the question was asking and I do understand how the answer was arrived at

self critique assessment: 2

.................................................

&#Very good work. Let me know if you have questions. &#