#$&* course Phy 241 November 9 around 1:30pm. 024. `query 24*********************************************
.............................................
Given Solution: `a** If the string goes slack just at the instant the weight reaches the 'top' of its circular path then we are assured that the centripetal acceleration is equal to the acceleration of gravity. If there is tension in the string then the weight is being pulled downward and therefore toward the center by a force that exceeds its weight. If the string goes slack before the weight reaches the top of its arc then the path isn't circular and our results won't apply to an object moving in a circular arc. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ self-critique rating #$&*: ********************************************* Question: `qUniv. 3.58. (This problem has apparently been eliminated from recent editions, due to the now policitally incorrect nature of the device being thrown. The problem is a very good one and has been edited to eliminate politically incorrect references). Good guys in a car at 90 km/hr are following bad guys driving their car, which at a certain instant is 15.8 m in front of them and moving at a constant 110 km/hr; an electronic jamming device is thrown by the good guys at 45 deg above horizontal, as they observe it. This device must land in the bad guy's car. With what speed must the device be thrown relative to the good guys, and with what speed relative to the ground? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: vo=45 degrees v0y=v0 sin (45)=0.7v0 v0x=v0cos (45)=0.7v0 Change in y=0 =v0y’dt+1/2a’dt^2 ‘dt=-2v0y/(-g) =2(0.7v0)/g =1.4v0/g Change in x =v0x’dt+ax’dt =0.7v0’dt 110km/hr-90km/hr=20km/hr Need to convert 20km/hr to m/s. I will need to plug this into change in x equation. I don’t know where to go from here… confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The device is thrown at velocity v0 at 45 deg, giving it v0y = .71 v0 and v0x = .71 v0. The device will return to its original vertical position so we have `dsy = 0. Using `dsy = v0y `dt + .5 g `dt^2 with `dsy = 0 and assuming the upward direction to be positive we obtain v0y `dt + .5 (-g) `dt^2 = 0 so that `dt = 0 or `dt = - 2 * v0y / (-g) = 2 * 71 v0 / g. In time `dt the horizontal displacement relative to the car will be `dsx = v0x `dt + ax `dt; since acceleration ax in the x direction and v0x = .71 v0 is zero we have `dsx = .71 v0 * `dt. We also know that relative to the first car the second is moving at 20 km / hr = 20,000 m / (3600 sec) = 5.55 m/s, approx.; since its initial position is 15.8 m in front of the first car we have `dsx = 15.8 m + 5.55 m/s * `dt. To keep the equations symbolic we use x0Relative and vRelative for the relative initial position and velocity of the second car with respect to the first. We thus have three equations: `dt = 2 * .71 v0 / g = 1.42 v0 / g. `dsx = .71 v0 * `dt `dsx = x0Relative + v0Relative * `dt. This gives us three equations in the variables v0, `dt and `dsx, which we reduce to two by substituting the expression -2 to obtain: `dsx = .71 v0 * 1.42 v0 / g = v0^2 / g `dsx = x0Relative + v0Relative * 1.42 v0 / g. Setting the right-hand sides equal we have v0^2 / g = x0Relative + v0Relative * 1.42 v0 / g, or v0^2 - v0Relative * 1.42 v0 - g * x0Relative = 0. We get v0 = [1.42 v0Relative +-sqrt( (1.42 v0Relative)^2 - 4 * (-g * x0Relative) ) ] / 2 = [1.42 * v0Relative +-sqrt( (1.42 * v0Relative)^2 + 4 * g * x0Relative) ] / 2. Substituting 5.55 m/s for v0Relative and 15.8 m for x0Relative we get [1.42 * 5.55 m/s +-sqrt( (1.42 *5.55 m/s)^2 + 4 * 9.8 m/s^2 *15.8 m) ] / 2 = 17 m/s or -9.1 m/s, approx.. We conclude that the initial velocity with respect to the first case must be 17 m/s. Checking this we see that the device will have initial x and y velocities 7.1 * 17 m/s = 12 m/s, approx., and will therefore stay aloft for 2 * 12 m/s / (9.8 m/s^2) = 2.4 sec, approx.. It will therefore travel 2.4 sec * 12 m/s = 28 m, approx. in the horizontal direction relative to the first car. During this time the second car will travel about 5.55 m/s * 2.4 sec = 13 m, approx., resulting in relative position 15.8 m + 13 m = 28.8 m with respect to the first. This is reasonably close to the 28 m obtained from the motion of the projectile. Correcting for roundoff errors will result in precise agreement. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK I see where to go from where I ended, using symbolic solutions and solving simultaneously. It’s just a matter of substituting after that. Got it! ------------------------------------------------ self-critique rating #$&*: