Query Questions 29

#$&*

course Phy 241

November 19 around 11:45pm.

029. `query 29*********************************************

Question: `qQuery class notes #28. Explain how we can calculate the average angular velocity and the angular acceleration of an object which rotates from rest through a given angle in a given time interval, assuming constant angular acceleration.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Angular acceleration= (change in angular velocity)/(change in time)

Average angular velocity= (change in angular position)/(change in time)

The change in angular velocity = final angular velocity

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a**This situation is strictly analogous to the one you encountered early in the course. As before acceleration is change in velocity / change in clock time. However now it's angular acceleration.

We have

angular acceleration = change in angular velocity / change in clock time.

The average angular velocity is change in angular position / change in clock time.

This question assumes you know the angle through which the object rotates, which is its change in angular position, as well as the change in clock time.

So you can calculate the average angular velocity.

If angular accel is uniform and initial angular velocity is zero then the final angular velocity is double the average angular velocity. In this case the change in angular velocity is equal to the final angular velocity, which is double the average angular velocity.

From this information you can calculate angular acceleration. **

Principles of Physics and General College Physics Problem 7.46: Center of mass of system 1.00 kg at .50 m to left of 1.50 kg, which is in turn .25 m to left of 1.10 kg.

Using the position of the 1.00 kg mass as the x = 0 position, the other two objects are respectively at x = .50 m and x = .75 m.

The total moment of the three masses about the x = 0 position is 1.00 kg * (0 m) + 1.50 kg * (.50 m) + 1.10 kg * (.75 m) = 1.58 kg m.

The total mass is 1.00 kg + 1.50 kg + 1.10 kg = 3.60 kg, so the center of mass is at position

x_cm = 1.58 kg m / (3.60 kg) = .44 meters,

placing it a bit to the left of the 1.50 kg mass.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

self-critique rating #$&*:

*********************************************

Question: `qUniv. 8.94 (8.82 10th edition). 45 kg woman 60 kg canoe walk starting 1 m from left end to 1 m from right end, moving 3 meters closer to the right end. How far does the canoe move? Water resistance negligible.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Center of mass is at rest.

Fnet=0

Left side: (1*45 + 2.5*60)/(45+60)

=195/105

=1.86m

Right side: (4*45 + 2.5*60)/(45+60)

=330/105

=3.14m

3.14m-1.86m=1.28m

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** Since water resistance is negligible the net force acting on the system is zero. Since the system is initially stationary the center of mass of the system is at rest; since zero net force acts on the system this will continue to be the case.

Assuming that the center of mass of the canoe is at the center of the canoe, then when the woman is 1 m from the left end the center of mass of the system lies at distance

c.m.1 = (1 m * 45 kg + 2.5 m * 60 kg) / (45 kg + 60 kg) = 195 kg m / (105 kg) = 1.85 m

from the left end of the canoe.

A similar analysis shows that when the woman is 1 m from the right end of the canoe, then since she is 4 m from the left end the center of mass lies at

c.m.2 = (4 m * 45 kg + 2.5 m * 60 kg) / (45 kg + 60 kg) = 310 kg m / (105 kg) = 2.97 m.

The center of mass therefore changes its position with respect to the left end of the canoe by about 1.1 meters toward the right end of the canoe. Since the center of mass itself doesn't move the canoe must move 1.1 meters toward the left end, i.e., backwards.

Note that since the woman moves 3 m forward with respect to the canoe and the canoe moves 1.3 m backwards the woman actually moves 1.7 m forward. The sum -1.3 m * 60 kg + 1.7 m * 45 kg is zero, to within roundoff error. This is as it should be since this sum represents the sum of the changes in the centers of mass of the canoe and the woman, which is the net change in the position of center of mass. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

self-critique rating #$&*:

&#Your work looks good. Let me know if you have any questions. &#

#$&*