Assignment 14

course Mth 158

014. `* 14*********************************************

Question: * 1.6.12 (was 1.6.6). Explain how you found the real solutions of the equation | 1 - 2 z | + 6 = 0.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Take 6 to the other side making = 3 and solve for equations 1-2z = 3 and 1-2z = -3 and solve giving z= -1 z = 2

Confidence Assessment:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Starting with

| 1-2z| +6 = 9 we add -6 to both sides to get

| 1 - 2z| = 3. We then use the fact that | a | = b means that a = b or a = -b:

1-2z=3 or 1-2z= -3 Solving both of these equations:

-2z = 2 or -2z = -4 we get

z= -1 or z = 2 We express our solution set as

{-2/3,2} **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: * 1.6.30 (was 1.6.24). Explain how you found the real solutions of the equation | x^2 +3x - 2 | = 2

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Rearrange the expression so that x^2+3x-4=0 and x^2+3x=0 and then solve through getting

x= -3 and x=0

Confidence Assessment:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * My note here might be incorrect.

If the equation is | x^2 +3x -2 | = 2 then we have

x^2 + 3x - 2 = 2 or x^2 + 3x - 2 = -2.

In the first case we get x^2 + 3x - 4 = 0, which factors into (x-1)(x+4) = 0 with solutions x = 1 and x = -4.

In the second case we have x^2 + 3x = 0, which factors into x(x+3) = 0, with solutions x = 0 and x = -3. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I got the same answer

Self-critique Rating:

*********************************************

Question: * 1.6.40 \ 36 (was 1.6.30). Explain how you found the real solutions of the inequality | x + 4 | + 3 < 5.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Take 3 to the other side leaving 2 then subtract by 4 giving -2 so -6 < x < -2

Confidence Assessment:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * STUDENT SOLUTION: | x+4| +3 < 5

| x+4 | < 2

-2 < x+4 < 2

-6 < x < -2

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: * 1.6.52 \ 48 (was 1.6.42). Explain how you found the real solutions of the inequality | -x - 2 | >= 1.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Take the 2 to the other side giving with =-1 and =1 giving -x >= 3 or -x <= 1 or x <= -3 or x >= -1 which covers all numbers basically

Confidence Assessment:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Correct solution:

| -x -2 | >= 1 Since | a | > b means a > b or a < -b (note the word 'or') we have

-x-2 >= 1 or -x -2 <= -1. These inequalities are easily solved to get

-x >= 3 or -x <= 1 or

x <= -3 or x >= -1.

So our solution is

{-infinity, -3} U {-1, infinity}. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

"

&#This looks good. Let me know if you have any questions. &#