Assignment 17

course Mth 158

017. `* 17

Note that you can't use a calculator graph to document your solutions to these problems. You have to use the analytical methods as in the given solutions.

Documentation is required on tests, and while you may certainly use the calculator to see symmetry, intercepts etc., you have to support your solutions with the algebraic details of why the graph looks the way it does.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: * 2.2.34 / 10 (was 2.2.6). Point symmetric to (-1, -1) wrt x axis, y axis, origin.

What point is symmetric to the given point with respect to each: x axis, y axis, the origin?

X axis (-1,1)

Y axis (1, -1)

Origin (1,1)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Confidence Assessment:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * There are three points:

The point symmetric to (-1, -1) with respect to the x axis is (-1 , 1).

The point symmetric to (-1, -1) with respect to the y axis is y axis (1, -1)

The point symmetric to (-1, -1) with respect to the origin is ( 1,1). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: * 2.2.43 / 19 (was 2.2.15). Parabola vertex origin opens to left. **** Give the intercepts of the graph and tell whether the graph is symmetric to the x axis, to the y axis and to the origin. Explain how you determined the answer to each question.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Okay, the graph is symmetric to x axis so the reflection below the x axis

Confidence Assessment:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The graph intercepts both axes at the same point, (0,0)

The graph is symmetric to the x-axis, with every point above the x axis mirrored by its 'reflection' below the x axis. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: * 2.2.48 / 24 (was 2.2.20). basic cubic poly arb vert stretch **** Give the intercepts of the graph and tell whether the graph is symmetric to the x axis, to the y axis and to the origin. Explain how you determined the answer to each question.

The graph s strictly increasing except perhaps at the origin where it might level off for just an instant, in which case the only intercept is at the origin (0, 0).

The graph is symmetric with respect to the origin, since for every x we have f(-x) = - f(x). For example, f(2) = 8 and f(-2) = -8. It looks like f(1) = 1 and f(-1) = -1. Whatever number you choose for x, f(-x) = - f(x).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

it is like the reflection in a way the graph is symmetric

Self-critique Rating:

*********************************************

Question: * 2.2.62 / 40 (was 2.2.36). 4x^2 + y^2 = 4 **** List the intercepts and explain how you made each test for symmetry, and the results of your tests.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Let y = 0 to find the x intercept so 4x^2 + 0 = 1 so

x=1/2 or -1/2

x intercepts = (1/2,0) and ( -1/2,0)

do the same to find the y intercept so 0 +y^2 = 1

y= 1 or -1

y intercepts = (0,1) and (0,-1)

Confidence Assessment:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Starting with 4x^2 +y^2 = 1 we find the x intercept by letting y = 0.

We get

4x^2 + 0 = 1 so

4x^2 = 1 and

x^2=1/4 . Therefore

x=1/2 or -1/2 and the x intercepts are

(1/2,0) and ( -1/2,0).

Starting with 4x^2 +y^2 = 1 we find the y intercept by letting x = 0.

We get

0 +y^2 = 1 so

y^2 = 1 and

y= 1 or -1, giving us y intercepts

(0,1) and (0,-1).

To test for symmetry about the y axis we substitute -x for x. If there's no change in the equation then the graph will be symmetric to about the y axis.

Substituting we get 4 (-x)^2 + y^2 = 1. SInce (-x)^2 = x^2 the result is 4 x^2 + y^2 = 1. This is identical to the original equation so we do have symmetry about the y axis.

To test for symmetry about the x axis we substitute -y for y. If there's no change in the equation then the graph will be symmetric to about the x axis.

Substituting we get 4 (x)^2 + (-y)^2 = 1. SInce (-y)^2 = y^2 the result is 4 x^2 + y^2 = 1. This is identical to the original equation so we do have symmetry about the x axis.

To test for symmetry about the origin we substitute -x for x and -y for y. If there's no change in the equation then the graph will be symmetric to about the origin.

Substituting we get 4 (-x)^2 + (-y)^2 = 1. SInce (-x)^2 = x^2 and (-y)^2 - y^2 the result is 4 x^2 + y^2 = 1. This is identical to the original equation so we do have symmetry about the origin. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

right you can test if you did it write by plugging in the numbers

Self-critique Rating:

*********************************************

Question: * 2.2.68 / 46 (was 2.2.42). y = (x^2-4)/(2x) **** List the intercepts and explain how you made each test for symmetry, and the results of your tests.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Not sure. But looking ahead, testing and trying points is the best option.

Confidence Assessment:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

These problems are a bit tricky at times as the previous assignment

.............................................

Given Solution:

* * We do not have symmetry about the x or the y axis, but we do have symmetry about the origin:

To test for symmetry about the y axis we substitute -x for x. If there's no change in the equation then the graph will be symmetric to about the y axis.

}Substituting we get y = ( (-x)^2 - 4) / (2 * (-x) ). SInce (-x)^2 = x^2 the result is y = -(x^2 - 4) / (2 x). This is not identical to the original equation so we do not have symmetry about the y axis.

To test for symmetry about the x axis we substitute -y for y. If there's no change in the equation then the graph will be symmetric to about the x axis.

Substituting we get -y = (x^2-4)/(2x) , or y = -(x^2-4)/(2x). This is not identical to the original equation so we do not have symmetry about the x axis.

To test for symmetry about the origin we substitute -x for x and -y for y. If there's no change in the equation then the graph will be symmetric to about the origin.

Substituting we get -y = ((-x)^2-4)/(2(-x)) SInce (-x)^2 = x^2 the result is -y = -(x^2-4)/(2x), or multiplying both sides by -1, our result is y = (x^2-4)/(2x). This is identical to the original equation so we do have symmetry about the origin. **

&#This looks very good. Let me know if you have any questions. &#