Assignment 19

course Mth 158

019. `* 19

*********************************************

Question: * 2.4.10 (was 2.4.30). (0,1) and (2,3) on diameter **** What are the center, radius and equation of the indicated circle?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Radius = ½ * 2 = 1 so (x-1)^2 + (y-2)^2 = r^2 and substitute for (0,1) giving r^2 = 2

Equation being (x-1)^2 + (y - 2)^2 = 2

Confidence Assessment:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The distance from (0,1) to (2,3) is sqrt( (2-0)^2 + (3-1)^2 ) = 2. This distance is a diameter so that the radius is 1/2 (2) = 1.

The equation (x-h)^2 + (y-k)^2 = r^2 becomes

(x-1)^2 + (y-2)^2 = r^2.

Substituting the coordinates of the point (0, 1) we get

(0-1)^2 + (1-2)^2 = r^2 so that

r^2 = 2.

Our equation is therefore

(x-1)^2 + (y - 2)^2 = 2.

You should double-check this solution by substituting the coordinates of the point (2, 3). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: * 2.4.14 / 16 (was 2.4.36). What is the standard form of a circle with (h, k) = (1, 0) with radius 3?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Plug into equation to give (x-1)^2 +(y - 0)^2 = 3^2

Further x^2 - 2x +1+y^2 = 0 and x^2 - 2x + y^2 = 8

Confidence Assessment:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The standard form of a circle is (x - h)^2 + (y - k)^2 = r^2, where the center is at (h, k) and the radius is r.

In this example we have (h, k) = (1, 0). We therefore have

(x-1)^2 +(y - 0)^2 = 3^2.

This is the requested standard form.

This form can be expanded and simplified to a general quadratic form. Expanding (x-1)^2 and squaring the 3 we get

x^2 - 2x +1+y^2 = 9

x^2 - 2x + y^2 = 8.

However this is not the standard form.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: * 2.4.22 / 24 (was 2.4.40). x^2 + (y-1)^2 = 1 **** Give the center and radius of the circle and explain how they were obtained. In which quadrant(s) was your graph and where did it intercept x and/or y axes?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Plugging in numbers (x - 0)^2 + (y-1)^2 = 1

If y is 0 then substitute in and get x=0 giving intercepts (0,0)

If x=0 then substitute and get (y-1) = +-1 giving intercepts (0,0) and (0,-2)

Confidence Assessment:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The standard form of a circle is (x - h)^2 + (y - k)^2 = r^2, where the center is at (h, k) and the radius is r.

In this example the equation can be written as

(x - 0)^2 + (y-1)^2 = 1

So h = 0 and k = 1, and r^2 = 1. The center of the is therefore (0, -1) and r = sqrt(r^2) = sqrt(1) = 1.

The x intercept occurs when y = 0:

x^2 + (y-1)^2 = 1. I fy = 0 we get

x^2 + (0-1)^2 = 1, which simplifies to

x^2 +1=1, or

x^2=0 so that x = 0. The x intercept is therefore (0, 0).

The y intercept occurs when x = 0 so we obtain

0 + (y-1)^2 = 1, which is just (y - 1)^2 = 1. It follow that

(y-1) = +-1.

If y - 1 = 1 we get y = 2; if y - 1 = -1 we get y -2. So the y-intercepts are

(0,0) and (0,-2)

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: * 2.4.32 / 34 (was 2.4.48). 2 x^2 + 2 y^2 + 8 x + 7 = 0 **** Give the center and radius of the circle and explain how they were obtained. In which quadrant(s) was your graph and where did it intercept x and/or y axes?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Simplify: 2x^2+ 2y^2 +8x+7=0 putting terms together

Get common factor: 2x^2 +8x +2y^2 =-7

Complete the square: x^2 + 4x + 4 + y^2 = -7/2 + 4

Factor out to get (x+2)^2 + y^2 = ½

the center is (-2,0)

the radius is sqrt (1/2)

now in getting the intercepts:

If y = 0

(x+2)^2 + 0^2 = 1/2

(x+2)^2 = 1/2

(x+2) = +- sqrt(1/2)

x + 2 = sqrt(1/2) yields x = sqrt(1/2) - 2 = -1.3

x + 2 = -sqrt(1/2) yields x = -sqrt(1/2) - 2 = -2.7

If x = 0

(0+2)^2 + y^2 = 1/2

4 + y^2 = 1/2

y^2 = 1/2 - 4 = -7/2

Confidence Assessment:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Starting with

2x^2+ 2y^2 +8x+7=0 we group x and y terms to get

2x^2 +8x +2y^2 =-7. We then divide by the common factor 2 to get

x^2 +4x + y^2 = -7/2. We complete the square on x^2 + 4x, adding to both sides (4/2)^2 = 4, to get

x^2 + 4x + 4 + y^2 = -7/2 + 4. We factor the expression x^2 + 4x + 4 to obtain

(x+2)^2 + y^2 = 1/2. From the standard form of the equation for a circle we see that

the center is (-2,0)

the radius is sqrt (1/2).

To get the intercepts:

We use (x+2)^2 + y^2 = 1/2

If y = 0 then we have

(x+2)^2 + 0^2 = 1/2

(x+2)^2 = 1/2

(x+2) = +- sqrt(1/2)

x + 2 = sqrt(1/2) yields x = sqrt(1/2) - 2 = -1.3 approx.

x + 2 = -sqrt(1/2) yields x = -sqrt(1/2) - 2 = -2.7 approx

If x = 0 we have

(0+2)^2 + y^2 = 1/2

4 + y^2 = 1/2

y^2 = 1/2 - 4 = -7/2.

y^2 cannot be negative so there is no y intercept. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: * 2.4.40 / 30 (was 2.4.54). General equation if diameter contains (4, 3) and (0, 1). **** Give the general equation for your circle and explain how it was obtained.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Get the midpoint: ((4+0)/2, (3+1)/2) = (2, 2)

Radius: sqrt( (2-0)^2 + (2-1)^2 ) = sqrt(5) giving

(x-2)^2 + (y-2)^2 = (sqrt(5))^2 or

(x-2)^2 + (y-2)^2 = 5

Confidence Assessment:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The center of the circle is the midpoint between the two points, which is ((4+0)/2, (3+1)/2) = (2, 2).

The radius of the circle is the distance from the center to either of the given points. The distance from (2, 2) to (0, 1) is sqrt( (2-0)^2 + (2-1)^2 ) = sqrt(5).

The equation of the circle is therefore

(x-2)^2 + (y-2)^2 = (sqrt(5))^2 or

(x-2)^2 + (y-2)^2 = 5. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

"

&#Your work looks very good. Let me know if you have any questions. &#