Assignment 27

course Mth 158

If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.

Your solution, attempt at solution:

If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

027. `* 27

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: * 3.6.2 / 10. P = (x, y) on y = x^2 - 8.

Give your expression for the distance d from P to (0, -1)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

sqrt( (0 - x)^2 + (-1 - (x^2-8))^2)

sqrt(x^2 + (-7-x^2)^2)

sqrt( x^2 + 49 - 14 x^2 + x^4)

sqrt( x^4 - 13 x^2 + 49)

Confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** P = (x, y) is of the form (x, x^2 - 8).

So the distance from P to (0, -1) is

sqrt( (0 - x)^2 + (-1 - (x^2-8))^2) =

sqrt(x^2 + (-7-x^2)^2) =

sqrt( x^2 + 49 - 14 x^2 + x^4) =

sqrt( x^4 - 13 x^2 + 49). **

What are the values of d for x=0 and x = -1?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

For x =0 then sqrt( x^4 - 13 x^2 + 49) = sqrt(0^4 - 13 * 0 + 49) = sqrt(49) = 7

For x=-1 then sqrt( x^4 - 13 x^2 + 49) = sqrt((-1)^4 - 13 * (-1) + 49) = sqrt( 64) = 8

Confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * If x = 0 we have

sqrt( x^4 - 13 x^2 + 49) = sqrt(0^4 - 13 * 0 + 49) = sqrt(49) = 7.

If x = -1 we have

sqrt( x^4 - 13 x^2 + 49) = sqrt((-1)^4 - 13 * (-1) + 49) = sqrt( 64) = 8.

Note that these results are the distances from the x = 0 and x = 1 points of the graph of y = x^2 - 8 to the point (0, -1). You should have a sketch of the function and you should vertify that these distances make sense. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: * 3.6.9 / 18 (was and remains 3.6.18). Circle inscribed in square.

What is the expression for area A as a function of the radius r of the circle?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

4 r^2 - pi r^2 = (4 - pi) r^2 The perimeter of the square is 4 times the length of a side which is 4 * 2r = 8r

Confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** A circle inscribed in a square touches the square at the midpoint of each of the square's edges; the circle is inside the square and its center coincides with the center of the square. A diameter of the circle is equal in length to the side of the square.

If the circle has radius r then the square has sides of length 2 r and its area is (2r)^2 = 4 r^2.

The area of the circle is pi r^2.

So the area of the square which is not covered by the circle is 4 r^2 - pi r^2 = (4 - pi) r^2. **

What is the expression for perimeter p as a function of the radius r of the circle?

The perimeter of the square is 4 times the length of a side which is 4 * 2r = 8r. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: * 3.6.19 / 27 (was 3.6.30). one car 2 miles south of intersection at 30 mph, other 3 miles east at 40 mph

Give your expression for the distance d between the cars as a function of time.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

distance = sqrt(x^2 + y^2) = sqrt( (2 + 30 t)^2 + (3 + 40t)^2 ) = sqrt( 4 + 120 t + 900 t^2 + 9 + 240 t + 1600 t^2) = sqrt( 2500 t^2 + 360 t + 13).

Confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** At time t the position of one car is 2 miles south, increasing at 30 mph, so its position function is 2 + 30 t.

The position function of the other is 3 + 40 t.

If these are the x and the y coordinates of the position then the distance between the cars is

distance = sqrt(x^2 + y^2) = sqrt( (2 + 30 t)^2 + (3 + 40t)^2 ) = sqrt( 4 + 120 t + 900 t^2 + 9 + 240 t + 1600 t^2) = sqrt( 2500 t^2 + 360 t + 13). **

"

&#Very good work. Let me know if you have questions. &#