course Mth 158 If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.
.............................................
Given Solution: The denominator is x^4 + 1, which could be zero only if x^4 = -1. However x^4 being an even power of x, it cannot be negative. So the denominator cannot be zero and there are no vertical asymptotes. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique Rating: ********************************************* Question: * 5.2.43 / 7th edition 4.3.43. Find the vertical and horizontal asymptotes, if any, of H(x)= (x^4+2x^2+1) / (x^2-x+1). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: First factor : (x^2 + 1)^2 / (x-1)^2 Vertical asymptote of x=1 No horizontal asymptotes confidence rating: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The function (x^4+2x^2+1) / (x^2-x+1) factors into (x^2 + 1)^2 / (x-1)^2. The denominator is zero if x = 1. The numerator is not zero when x = 1 so there is a vertical asymptote at x = 1. The degree of the numerator is greater than that of the denominator so the function has no horizontal asymptotes. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique Rating: ********************************************* Question: * 5.2.50 / 7th edition 4.3.50. Find the vertical and horizontal asymptotes, if any, of R(x)= (6x^2+x+12) / (3x^2-5x-2). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: vertical asymptotes at x = 2 and x = -1/3 horizontal asymptote y = 6 x^2 / (3 x^2) = 2 confidence rating: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * The expression R(x)= (6x^2+x+12) / (3x^2-5x-2) factors as (6•x^2 + x + 12)/((x - 2)•(3•x + 1)). The denominator is zero when x = 2 and when x = -1/3. The numerator is not zero at either of these x values so there are vertical asymptotes at x = 2 and x = -1/3. The degree of the numerator is the same as that of the denominator so the leading terms yield horizontal asymptote y = 6 x^2 / (3 x^2) = 2. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique Rating: "