Assignment 38

course Mth 158

If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.

Your solution, attempt at solution:

If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

038. * 38

*********************************************

Question: * 6.5.18 / 7th edition 5.5.18. Exact value of log{base 3}{(8) * log{base 8}(9).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

log{base 3}(8) * log{base 8}(9) = log 8 / log 3 * log 9 / log 8 = log 9 / log 3 = log{base 3}(9)

log{base 3}(8) * log{base 8}(9) = 2

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * log{base 3}(8) * log{base 8}(9) = log 8 / log 3 * log 9 / log 8 = log 9 / log 3 = log{base 3}(9).

log{base 3}(9) is the power to which 3 must be raised to get 9, and is therefore equal to 2.

Thus log{base 3}(8) * log{base 8}(9) = 2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 6.5.24 / 7th edition 5.5.24. ln(2) = a, ln(3) = b. What is ln(2/3) in terms of a and b?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

ln(2/3) = ln(2) - ln(3) = a - b

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ln(2/3) = ln(2) - ln(3) = a - b.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 6.5.26 / 7th edition 5.5.26. ln(0.5) in terms of a and b.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

ln(.5) = ln(1/2) = ln(1) - ln(2) = 0 - a = -a

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Since ln(2) = a, and since ln(1) = 0, we have

ln(.5) = ln(1/2) = ln(1) - ln(2) = 0 - a = -a.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 6.5.52 / 7th edition 5.5.52. log{base 3}(u^2) – log{base 3}(v) as a single log.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

log{base 3}(u^2) – log{base 3}(v) = log{base 3}(u^2 / v

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * log{base 3}(u^2) – log{base 3}(v) = log{base 3}(u^2 / v).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 6.5.58 / 7th edition 5.5.68. Using a calculator express log{base1 / 2}(15)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

log{base 1/2}(15) = log(15) / log(1/2) = 1.176091259 / )-0.3010299956) = -3.906890595

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * We get log{base 1/2}(15) = log(15) / log(1/2) = 1.176091259 / )-0.3010299956) = -3.906890595.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 6.5.82 / 7th edition 5.5.80. Express y as a function of x if ln y = ln(x + C).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(x+c) = e^y

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * a = ln(b) means e^a = b, so y = ln(x+c) is translated to exponential form as

(x+c) = e^y.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

&#This looks very good. Let me know if you have any questions. &#