#$&* course PHY 231 11/9 11:54 024. `query 24
.............................................
Given Solution: `a** If the string goes slack just at the instant the weight reaches the 'top' of its circular path then we are assured that the centripetal acceleration is equal to the acceleration of gravity. If there is tension in the string then the weight is being pulled downward and therefore toward the center by a force that exceeds its weight. If the string goes slack before the weight reaches the top of its arc then the path isn't circular and our results won't apply to an object moving in a circular arc. ** ********************************************* Question: `qWhy do you expect that, if the string is released exactly at the top of the circle, the initial velocity of the washer will be horizontal?
.............................................
Given Solution: `a** The direction of an object moving in a circular arc is perpendicular to a radial line (i.e., a line from the center to a point on the circle). When the object is at the 'top' of its arc it is directly above the center so the radial line is vertical. Its velocity, being perpendicular to this vertical, must be entirely in the horizontal direction. ** ********************************************* Question: `qWhat is the centripetal acceleration of the washer at the instant of release, assuming that it is released at the top of its arc and that it goes slack exactly at this point, and what was the source of this force?
.............................................
Given Solution: `a** Under these conditions, with the string slack and not exerting any force on the object, the centripetal acceleration will be equal to the acceleration of gravity. ** STUDENT QUESTION: could this answer be achieved from the equation given INSTRUCTOR RESPONSE: This conclusion is drawn simply because the object is traveling in a circular arc, and at this position the string is not exerting any force on it. The only force acting on it at this position is the gravitational force. Therefore its centripetal acceleration is equal to the acceleration of gravity. Knowing the radius of the circle and v, this allows us to make a good estimate of the acceleration of gravity. !?!?!?!?!?!?!?! I don't know what the part above is referring to. !?!?!?!?!?!?!?!?! QQuestion: `qUniv. 3.58. (This problem has apparently been eliminated from recent editions, due to the now policitally incorrect nature of the device being thrown. The problem is a very good one and has been edited to eliminate politically incorrect references). Good guys in a car at 90 km/hr are following bad guys driving their car, which at a certain instant is 15.8 m in front of them and moving at a constant 110 km/hr; an electronic jamming device is thrown by the good guys at 45 deg above horizontal, as they observe it. This device must land in the bad guy's car. With what speed must the device be thrown relative to the good guys, and with what speed relative to the ground? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: vg= 25 m/s vb=30.56 m/s vb/g= 5.56 ∆y= 0= v sin 45 (t)-1/2gt^2----> t(v sin 45-g/2t) = 0 -----> @ t=0 and v sin 45=gt/2-----> t= (2v*sin45)/g ∆x= v cos 45(t) Also, since the car is moving ahead relative to the first ∆x is changing: ∆x= 15.8+5.56t Substituting in for t and setting equal (note that 2*sin 45*cos 45 ≈ 1 and 2*5.56*sin 45≈ 7.9) v^2/g = 15.8+7.9v/g------->v^2-7.9v-155=0 v= 17 m/s (+root only) relative to good guys vgr= vgr/g+vg = 25+17 = 42 m/s confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The device is thrown at velocity v0 at 45 deg, giving it v0y = .71 v0 and v0x = .71 v0. The device will return to its original vertical position so we have `dsy = 0. Using `dsy = v0y `dt + .5 g `dt^2 with `dsy = 0 and assuming the upward direction to be positive we obtain v0y `dt + .5 (-g) `dt^2 = 0 so that `dt = 0 or `dt = - 2 * v0y / (-g) = 2 * 71 v0 / g. In time `dt the horizontal displacement relative to the car will be `dsx = v0x `dt + ax `dt; since acceleration ax in the x direction and v0x = .71 v0 is zero we have `dsx = .71 v0 * `dt. We also know that relative to the first car the second is moving at 20 km / hr = 20,000 m / (3600 sec) = 5.55 m/s, approx.; since its initial position is 15.8 m in front of the first car we have `dsx = 15.8 m + 5.55 m/s * `dt. To keep the equations symbolic we use x0Relative and vRelative for the relative initial position and velocity of the second car with respect to the first. We thus have three equations: `dt = 2 * .71 v0 / g = 1.42 v0 / g. `dsx = .71 v0 * `dt `dsx = x0Relative + v0Relative * `dt. This gives us three equations in the variables v0, `dt and `dsx, which we reduce to two by substituting the expression -2 to obtain: `dsx = .71 v0 * 1.42 v0 / g = v0^2 / g `dsx = x0Relative + v0Relative * 1.42 v0 / g. Setting the right-hand sides equal we have v0^2 / g = x0Relative + v0Relative * 1.42 v0 / g, or v0^2 - v0Relative * 1.42 v0 - g * x0Relative = 0. We get v0 = [1.42 v0Relative +-sqrt( (1.42 v0Relative)^2 - 4 * (-g * x0Relative) ) ] / 2 = [1.42 * v0Relative +-sqrt( (1.42 * v0Relative)^2 + 4 * g * x0Relative) ] / 2. Substituting 5.55 m/s for v0Relative and 15.8 m for x0Relative we get [1.42 * 5.55 m/s +-sqrt( (1.42 *5.55 m/s)^2 + 4 * 9.8 m/s^2 *15.8 m) ] / 2 = 17 m/s or -9.1 m/s, approx.. We conclude that the initial velocity with respect to the first case must be 17 m/s. Checking this we see that the device will have initial x and y velocities 7.1 * 17 m/s = 12 m/s, approx., and will therefore stay aloft for 2 * 12 m/s / (9.8 m/s^2) = 2.4 sec, approx.. It will therefore travel 2.4 sec * 12 m/s = 28 m, approx. in the horizontal direction relative to the first car. During this time the second car will travel about 5.55 m/s * 2.4 sec = 13 m, approx., resulting in relative position 15.8 m + 13 m = 28.8 m with respect to the first. This is reasonably close to the 28 m obtained from the motion of the projectile. Correcting for roundoff errors will result in precise agreement. ** Self-critique (if necessary): OK ------------------------------------------------ self-critique rating #$&*: