Query 19

#$&*

course Mth 152

7/21 10:40pm

If your solution to stated problem does not match the given solution, you should self-critique per instructions athttp://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.

Your solution, attempt at solution.

If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

019. ``q Query 19

*********************************************

Question: `q Query problem 13.6.9 wt vs ht 62,120; 62,140; 63,130; 65,150; 66,142; 67,13068,175; 68,135; 70,149; 72,168. Give the regression equation and the predicted weight when height is 70.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=3.35x-78.4 to predict weight when height is 70. Take x=70 and then 3.35*70-78.4 then y=156 so weight for a man that is 70 inches tall is 156 lbs.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe equation is obtained by substituting the weights for y and the heights for x in the formula for the regression line.

You get

y = 3.35 x - 78.4.

To predict weight when height is 70 you plug x = 70 into the equation:

y = 3.35 * 70 - 78.4.

You get

y = 156,

so the predicted weight for a man 70 in tall is 156 lbs. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `q Query problem 13.6.12 reading 83,76, 75, 85, 74, 90, 75, 78, 95, 80; IQ 120, 104, 98, 115, 87, 127, 90, 110, 134, 119

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

n=10, x-reading=811, y-IQ=1104, x^2=66225, y^2=124060, xy= 90437, 10(90437)-811(1104)/10(66225)-811^2=9026/4529=1.993, a=1.993. 1104-1.993/10=51.23, b= -51.23, 1.993x-51.23 is equation of regression line.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a

n = 10

sum x = 811

sum x ^2 = 66225

sum y = 1104

sum y^2 = 124060

sum xy = 90437

a = [10(90437) - (811)(1104)] / [10(66225) - (811^2)] = 1.993

a = 1.99

b = [1104 - (1.993)(811) / 10 = -51.23

y' = 1.993x - 51.23 is the eqation of the regression line.

**

STUDENT QUESTION

How did you get sum x ^2 = 66225??? Is it not 811 * 811 = 657721?

How did you come up with sum y^2 = 124060??? Is it not 1104 * 1104 = 1218816?

I worked it out, can you tell me where I went wrong??? And I will try to rework the problem.

INSTRUCTOR RESPONSE

You didn't distinguish between sum x^2 and (sum x)^2.

Sum x^2 means you figure out x^2 for every value of x, then add them. Remember that exponentiation precedes addition.

(sum x)^2 means you add all the x values then square them.

The same comment applies to sum y^2 vs. (sum y)^2.

You didn't ask, but sum xy can also be confusing:

• Sum xy means multiply each x value by the corresponding y value, then add the products. This is order of operations: multiplication before addition

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `q Query problem 13.6.15 years 0-5, sales 48, 59, 66, 75, 80, 89

What is the coefficient of correlation and how did you obtain it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

0 48 0 0 2304

1 59 59 1 3481

2 66 132 4 4356

3 75 225 9 5625

4 80 320 16 6400

5 89 445 25 7921

15 417 1181 55 30,087

n=6, x=15, y=417, xy=1181, x^2=55, y^2=30,087, r= 6(1181)-15(417)/sq root of 6955)-(15^2)* sq. root of 6(30,087)-(417^2)=

831/sq. root of 105*5798=

831 sq. root of 608790=

831/780.2=1.065

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a **STUDENT SOLUTION:

X Y XY X^2 Y^2

0 48 0 0 2304

1 59 59 1 3481

2 66 132 4 4356

3 75 225 9 5626

4 80 320 16 6400

5 90 450 25 8100

Sums=

15 418 1186 55 30266

The coefficient of the correlation: r = .996

I found the sums of the following:

x = 15, y = 418, x*y = 1186, x^2 = 55

n = 6 because there are 6 pairs in the data

I also had to find Ey^2 = 30266

I used the following formula:

r = 6(1186) - 15(418) / sq.root of 6(55) - (15)^2 * sq. root of 6(30266) - (418)^2 =

846 / sq. root of 105 * 6872 = 846 / sq. root of 721560 = 846 / 849.4 = .996 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I thought I had this correct, but looking at the solution where I got 417 you had 418, and you had 30,266 I had gotten 30,087.

------------------------------------------------

Self-critique Rating: 2

*********************************************

Question: `q Query problem 13.6.24 % in West, 1850-1990, .8% to 21.2%

What population is predicted in the year 2010 based on the regression line?

What is the equation of your regression line and how did you obtain it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

n=8, x=56, x^2=560, y= 77.7, y^2 1110.43, xy=786.4

a=1.44, b= -.39, r=.99

2010 - x=16, y= 1.44(16-.39= 22.65

22.65% increase in population by year 2010.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Given Solution

`aSTUDENT SOLUTION:

Calculating sums and regression line:

n = 8

sum x = 56

sum x^2 = 560

sum = 77.7

sum y^2 = 1110.43

sum xy = 786.4

a = 1.44

b = -.39

r = .99

In the year 2010 the x value will be 16.

y' = 1.44(16) - .39 = 22.65.

There is an expected 22.65% increase in population by the year 2010. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: 3

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Your work looks very good. Let me know if you have any questions. &#