Calculus

#$&*

course Mth 279

Question: `q001.

The graph of a certain function is a smooth curve passing through the points (3, 5), (7, 17) and (10, 29).

Between which two points do you think the graph is steeper, on the average?

Why do we say 'on the average'?

Your solution:

The steepest slope would be between (7, 17) and (10, 29) because of the following calculations:

(17 - 5) / (7 -3) =

12 / 4 = 3

(29 - 17) / (10 - 7) =

12 / 3 = 4

The segment with the slope of 4 is steeper because 4>3. We say on the average because on a curve the slope is constantly changing, but the slope on the average is an average of all of the slopes in between the two points being used.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Slope = rise / run.

Between points (7, 17) and (10, 29) we get rise / run = (29 - 17) / (10 - 7) =12 / 3 = 4.

The slope between points (3, 5) and (7, 17) is 3 / 1. (17 - 5) / (7 -3) = 12 / 4 = 3.

The segment with slope 4 is the steeper. The graph being a smooth curve, slopes may vary from point to point. The slope obtained over the interval is a specific type of average of the slopes of all points between the endpoints.

2. Answer without using a calculator: As x takes the values 2.1, 2.01, 2.001 and 2.0001, what values are taken by the expression 1 / (x - 2)?

1. As the process continues, with x getting closer and closer to 2, what happens to the values of 1 / (x-2)?

2. Will the value ever exceed a billion? Will it ever exceed one trillion billions?

3. Will it ever exceed the number of particles in the known universe?

4. Is there any number it will never exceed?

5. What does the graph of y = 1 / (x-2) look like in the vicinity of x = 2?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

x solution

2.1 10

2.01 100

2.001 1,000

2.0001 10,000

1. As x gets closer to two the value in the denominator gets closer to zero, making the value calculated grow at a fast pace.

2/3/4.Since we can input any amount of zeros between the 2 and the 1 in 2.###1, the value of the denominator can get as small as we want to make it, giving the calculated value the ability to exceed any number.

5. The graph would look like a line with an undefined slope meaning a straight, vertical line.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

For x = 2.1, 2.01, 2.001, 2.0001 we see that x -2 = .1, .01, .001, .0001. Thus 1/(x -2) takes respective values 10, 100, 1000, 10,000.

It is important to note that x is changing by smaller and smaller increments as it approaches 2, while the value of the function is changing by greater and greater amounts.

As x gets closer in closer to 2, it will reach the values 2.00001, 2.0000001, etc.. Since we can put as many zeros as we want in .000...001 the reciprocal 100...000 can be as large as we desire. Given any number, we can exceed it.

Note that the function is simply not defined for x = 2. We cannot divide 1 by 0 (try counting to 1 by 0's..You never get anywhere. It can't be done. You can count to 1 by .1's--.1, .2, .3, ..., .9, 1. You get 10. You can do similar thing for .01, .001, etc., but you just can't do it for 0).

As x approaches 2 the graph approaches the vertical line x = 2; the graph itself is never vertical. That is, the graph will have a vertical asymptote at the line x = 2. As x approaches 2, therefore, 1 / (x-2) will exceed all bounds.

Note that if x approaches 2 through the values 1.9, 1.99, ..., the function gives us -10, -100, etc.. So we can see that on one side of x = 2 the graph will approach +infinity, on the other it will be negative and approach -infinity.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `q003. One straight line segment connects the points (3,5) and (7,9) while another connects the points (10,2) and (50,4). From each of the four points a line segment is drawn directly down to the x axis, forming two trapezoids. Which trapezoid has the greater area? Try to justify your answer with something more precise than, for example, 'from a sketch I can see that this one is much bigger so it must have the greater area'.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The area of a trapezoid is given by the equation [(b1+b2)/2]*h where b1 and b2 are the lengths of the base, and h is the height. These are the calculations of the two areas:

A1 = [(5+9)/2]*4

= 7*4 = 28

A2 = [(2+4)/2]*40

= 3*40 = 120

From these calculations we can see that trapezoid 2 is bigger than trapezoid 1.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Your sketch should show that while the first trapezoid averages a little more than double the altitude of the second, the second is clearly much more than twice as wide and hence has the greater area.

To justify this a little more precisely, the first trapezoid, which runs from x = 3 to x = 7, is 4 units wide while the second runs from x = 10 and to x = 50 and hence has a width of 40 units. The altitudes of the first trapezoid are 5 and 9,so the average altitude of the first is 7. The average altitude of the second is the average of the altitudes 2 and 4, or 3. So the first trapezoid is over twice as high, on the average, as the first. However the second is 10 times as wide, so the second trapezoid must have the greater area.

This is all the reasoning we need to answer the question. We could of course multiply average altitude by width for each trapezoid, obtaining area 7 * 4 = 28 for the first and 3 * 40 = 120 for the second. However if all we need to know is which trapezoid has a greater area, we need not bother with this step.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

Self-critique Rating: OK

*********************************************

Question: `q004. If f(x) = x^2 (meaning 'x raised to the power 2') then which is steeper, the line segment connecting the x = 2 and x = 5 points on the graph of f(x), or the line segment connecting the x = -1 and x = 7 points on the same graph? Explain the basis of your reasoning.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The points at the given x points are as follows:

x y

-1 1

2 4

5 25

7 49

From these points we can find the slopes we were asked to find:

(25-4)/(5-2) = 21/3 = 7

(49-1)/(7+1) = 48/8 = 6

From these calculations it is obvious that the slope form x=2 to x=5 is steeper than the slope from x=-1 to x=7.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The line segment connecting x = 2 and the x = 5 points is steeper: Since f(x) = x^2, x = 2 gives y = 4 and x = 5 gives y = 25. The slope between the points is rise / run = (25 - 4) / (5 - 2) = 21 / 3 = 7.

The line segment connecting the x = -1 point (-1,1) and the x = 7 point (7,49) has a slope of (49 - 1) / (7 - -1) = 48 / 8 = 6.

The slope of the first segment is greater.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

Self-critique Rating: OK

*********************************************

Question: `q005. Suppose that every week of the current millennium you go to the jeweler and obtain a certain number of grams of pure gold, which you then place in an old sock and bury in your backyard. Assume that buried gold lasts a long, long time (this is so), that the gold remains undisturbed (maybe, maybe not so), that no other source adds gold to your backyard (probably so), and that there was no gold in your yard before..

1. If you construct a graph of y = the number of grams of gold in your backyard vs. t = the number of weeks since Jan. 1, 2000, with the y axis pointing up and the t axis pointing to the right, will the points on your graph lie on a level straight line, a rising straight line, a falling straight line, a line which rises faster and faster, a line which rises but more and more slowly, a line which falls faster and faster, or a line which falls but more and more slowly?

2. Answer the same question assuming that every week you bury 1 more gram than you did the previous week.

3. Answer the same question assuming that every week you bury half the amount you did the previous week.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1. The graph would look like a straight line, due to the steady set increase.

2. The graph would look like a line that got greater every single week, due to the increase that got greater every week.

3. The graph would look like a line that rises more and more slowly, due to the decreasing increase every week.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

1. If it's the same amount each week it would be a straight line.

2. Buying gold every week, the amount of gold will always increase. Since you buy more each week the rate of increase will keep increasing. So the graph will increase, and at an increasing rate.

3. Buying gold every week, the amount of gold won't ever decrease. Since you buy less each week the rate of increase will just keep falling. So the graph will increase, but at a decreasing rate. This graph will in fact approach a horizontal asymptote, since we have a geometric progression which implies an exponential function.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `q006. Suppose that every week you go to the jeweler and obtain a certain number of grams of pure gold, which you then place in an old sock and bury in your backyard. Assume that buried gold lasts a long, long time, that the gold remains undisturbed, and that no other source adds gold to your backyard.

1. If you graph the rate at which gold is accumulating from week to week vs. the number of weeks since Jan 1, 2000, will the points on your graph lie on a level straight line, a rising straight line, a falling straight line, a line which rises faster and faster, a line which rises but more and more slowly, a line which falls faster and faster, or a line which falls but more and more slowly?

2. Answer the same question assuming that every week you bury 1 more gram than you did the previous week.

3. Answer the same question assuming that every week you bury half the amount you did the previous week.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1. The graph would be a straight line.

2. The graph would be a rising straight line.

3. The graph would be a line that falls slower and slower.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

This set of questions is different from the preceding set. This question now asks about a graph of rate vs. time, whereas the last was about the graph of quantity vs. time.

Question 1: This question concerns the graph of the rate at which gold accumulates, which in this case, since you buy the same amount each week, is constant. The graph would be a horizontal straight line.

Question 2: Each week you buy one more gram than the week before, so the rate goes up each week by 1 gram per week. You thus get a rising straight line because the increase in the rate is the same from one week to the next.

Question 3. Since half the previous amount will be half of a declining amount, the rate will decrease while remaining positive, so the graph remains positive as it decreases more and more slowly. The rate approaches but never reaches zero.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

``q007. If the depth of water in a container is given, in centimeters, by 100 - 2 t + .01 t^2, where t is clock time in seconds, then what are the depths at clock times t = 30, t = 40 and t = 60? On the average is depth changing more rapidly during the first time interval or the second?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

t y

30 49

40 36

60 16

(49-36)/10 = 1.3 cm/s

(36-16)/20 = 1.0 cm/s

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

At t = 30 we get depth = 100 - 2 t + .01 t^2 = 100 - 2 * 30 + .01 * 30^2 = 49.

At t = 40 we get depth = 100 - 2 t + .01 t^2 = 100 - 2 * 40 + .01 * 40^2 = 36.

At t = 60 we get depth = 100 - 2 t + .01 t^2 = 100 - 2 * 60 + .01 * 60^2 = 16.

49 cm - 36 cm = 13 cm change in 10 sec or 1.3 cm/s on the average.

36 cm - 16 cm = 20 cm change in 20 sec or 1.0 cm/s on the average.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `q008. If the rate at which water descends in a container is given, in cm/s, by 10 - .1 t, where t is clock time in seconds, then at what rate is water descending when t = 10, and at what rate is it descending when t = 20? How much would you therefore expect the water level to change during this 10-second interval?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

t y

10 9

20 8

average rate = 8.5

implies change no more than 85 cm

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

At t = 10 sec the rate function gives us 10 - .1 * 10 = 10 - 1 = 9, meaning a rate of 9 cm / sec.

At t = 20 sec the rate function gives us 10 - .1 * 20 = 10 - 2 = 8, meaning a rate of 8 cm / sec.

The rate never goes below 8 cm/s, so in 10 sec the change wouldn't be less than 80 cm.

The rate never goes above 9 cm/s, so in 10 sec the change wouldn't be greater than 90 cm.

Any answer that isn't between 80 cm and 90 cm doesn't fit the given conditions.

The rate change is a linear function of t. Therefore the average rate is the average of the two rates, or 8.5 cm/s.

The average of the rates is 8.5 cm/sec. In 10 sec that would imply a change of 85 cm.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `q009. Sketch the line segment connecting the points (2, -4) and (6, 4), and the line segment connecting the points (2, 4) and (6, 1). The first of these lines if the graph of the function f(x), the second is the graph of the function g(x). Both functions are defined on the interval 2 <= x <= 6.

Let h(x) be the function whose value at x is the product of the values of these two functions. For example, when x = 2 the value of the first function is -4 and the value of the second is 4, so when x = 2 the value of h(x) is -4 * 4 = -16.

Answer the following based just on the characteristics of the graphs you have sketched. (e.g., you could answer the following questions by first finding the formulas for f(x) and g(x), then combining them to get a formula for h(x); that's a good skill but that is not the intent of the present set of questions).

What is the value of h(x) when x = 6?

Is the value of h(x) ever greater than its value at x = 6?

What is your best description of the graph of h(x)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

4*1 = 4

Yes.

@&

'Yes' is not an answer to a 'does it or doesn't it?' question. An answer must be fully supported with an explanation.

*@

@&

Consider the following, which is admittedly more than I would expect from a student after a single semester of calculus, but which can be understood by someone with that knowledge:

One reason I don't think the maximum of h(x) is at x = 6:

f ' (x) = 2 at all points.

g ' (x) = -3/4 at all points.

At any point (f * g) ' = f ' g + g ' f.

At x = 6, we get (f * g) ' = 2 * 1 + (-3/4) * 4 = -1.

Thus the graph of f g is decreasing at x = 4.

I don't expect many students to give this argument, though a knowledge of first-year calculus should be sufficient to arrive at this conclusion. However most students will not think of applying the product rule in this manner to the situation.

A numerical investigation would also reveal these trends. For example, using the slopes you could easily establish that g is almost twice as great at x = 5 as at x = 6, while f is more than half as great, proving without any extensive calculation or function modeling that h(5) must be greater than h(6). This argument is in fact nearly equivalent to the previous product-rule argument.

It would also be easy enough to find the linear equations for f and g, multiply them to get the quadratic function f g, find its critical points and second derivative, and draw the conclusion that the function maximizes somewhere between x = 2 and x = 6. However the preceding arguments are more elegant and preferable.

There are as well a number of other ways to answer this question.

*@

The values go from negative to positive at x = 4 with a decreasing steepness.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q010. A straight line segment connects the points (3,5) and (7,9), while the points (3, 9) and (7, 5) are connected by a curve which decreases at an increasing rate. From each of the four points a line segment is drawn directly down to the x axis, so that the first line segment is the top of a trapezoid and the second a similar to a trapezoid but with a curved 'top'. Which trapezoid has the greater area?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The trapezoid with the curved top. The added curve creates more area than just a straight line.

@&

You're right, but a curve can add area or take area away, depending on its concavity.

A full explanation would have addressed this.

*@

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q011. Describe the graph of the position of a car vs. clock time, given each of the following conditions:

The car coasts down a straight incline, gaining the same amount of speed every second

The car coasts down a hill which gets steeper and steeper, gaining more speed every second

The car coasts down a straight incline, but due to increasing air resistance gaining less speed with every passing second

Describe the graph of the rate of change of the position of a car vs. clock time, given each of the above conditions.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The positive side of a parabolic function that gets increasingly steeper.

The positive side of a parabolic function which is even more increasingly steeper than the previous graph.

@&

This and the preceding wouldn't both be parabolas, but your intent is clear and correct.

*@

It is like the graph of a square root function, which increases at a decreasing rate.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q012. If at t = 100 seconds water is flowing out of a container at the rate of 1.4 liters / second, and at t = 150 second the rate is 1.0 liters / second, then what is your best estimate of how much water flowed out during the 50-second interval?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Average rate of water flow is 1.2 liters/second. So 1.2*50 = 60 liters.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

&#Good work. See my notes and let me know if you have questions. &#