Open Query 28

#$&*

course Phy 122

028. `Query 28*********************************************

Question: `qQuery introductory problems set 54 #'s 1-7.

Explain how to obtain the magnetic field due to a given current through a small current segment, and how the position of a point with respect to the segment affects the result.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

B=kIL/r^2 sin(theta)

.............................................

Given Solution: ** IL is the source. The law is basically an inverse square law and the angle theta between IL and the vector r from the source to the point also has an effect so that the field is

B = k ' I L / r^2 * sin(theta). **

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `qQuery principles and general college physics problem 17.34: How much charge flows from each terminal of 7.00 microF capacitor when connected to 12.0 volt battery?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

12V*7mF=84microC

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: Capacitance is stored charge per unit of voltage: C = Q / V. Thus the stored charge is Q = C * V, and the battery will have the effect of transferring charge of magnitude Q = C * V = 7.00 microF * 12.0 volts = 7.00 microC / volt * 12.0 volts = 84.0 microC of charge.

This would be accomplished the the flow of 84.0 microC of positive charge from the positive terminal, or a flow of -84.0 microC of charge from the negative terminal. Conventional batteries in conventional circuits transfer negative charges.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: Explain how to obtain the magnetic field due to a circular loop at the center of the loop.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

B=2pikI/r

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** For current running in a circular loop:

Each small increment `dL of the loop is a source I `dL. The vector from `dL to the center of the loop has magnitude r, where r is the radius of the loop, and is perpendicular to the loop so the contribution of increment * `dL to the field is k ' I `dL / r^2 sin(90 deg) = I `dL / r^2, where r is the radius of the loop. The field is either upward or downward by the right-hand rule, depending on whether the current runs counterclockwise or clockwise, respectively. The field has this direction regardless of where the increment is located.

The sum of the fields from all the increments therefore has magnitude

B = sum(k ' I `dL / r^2), where the summation occurs around the entire loop. I and r are constants so the sum is

B = k ' I / r^2 sum(`dL).

The sum of all the length increments around the loop is the circumference 2 pi r of the loop so we have

B = 2 pi r k ' I / r^2 = 2 pi k ' I / r. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `qQuery magnetic fields produced by electric currents.

What evidence do we have that electric currents produce magnetic fields?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

The video experiment shows this most clearly. When the metal ball was placed near the wires and the generator was turned on the ball moved toward the wire coil.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT RESPONSE: We do have evidence that electric currents produce magnetic fields. This is observed in engineering when laying current carrying wires next to each other. The current carrying wires produce magnetic fields that may affect other wires or possibly metal objects that are near them. This is evident in the video experiment. When Dave placed the metal ball near the coil of wires and turned the generator to produce current in the wires the ball moved toward the coil. This means that there was an attraction toward the coil which in this case was a magnetic field.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `qWhat would be the area of a .20 F capacitor if plates are separated by 2.2 mm of air?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

A=4pik*d*C=4pi*9e9*.2*.0022=4.98e7 m^2

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** If a parallel-plate capacitor holds charge Q and the plates are separated by air, which has dielectric constant very close to 1, then the electric field between the plates is E = 4 pi k sigma = 4 pi k Q / A, obtained by applying Gauss' Law to each plate. The voltage between the plates is therefore V = E * d, where d is the separation.

The capacitance is C = Q / V = Q / (4 pi k Q / A * d) = A / (4 pi k d).

Solving this formula C = A / (4 pi k d) for A for the area we get A = 4 pi k d * C

If capacitance is C = .20 F and the plates are separated by 2.2 mm = .0022 m we therefore have

A = 4 pi k d * C = 4 pi * 9 * 10^9 N m^2 / C^2 * .20 C / V * .0022 m =

5 * 10^7 N m^2 / C^2 * C / ( J / C) * m =

5 * 10^7 N m^2 / (N m) * m =

5 * 10^7 m^2. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `qQuery problem 17.50 charge Q on capacitor; separation halved as dielectric with const K inserted; by what factor does the energy storage change? Compare the new electric field with the old.

Note that the problem in the latest version of the text doubles rather than halves the separation. The solution for the halved separation, given here, should help you assess whether your solution was correct, and if not should help you construct a detailed self-critique.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

Capacitance increases by 2

Confidence rating: 3

.............................................

Given Solution:

** For a capacitor we know the following:

• The electric field between the plates is 4 pi k Q / A (see solution to preceding problem), as long the separation d of the plates is small compared to the dimensions of the plates, and is independent of the separation.

• Voltage is work / unit charge to move from one plate to the other. Since work = force * distance, work / unit charge is which is force / unit charge * distance between plates. Equivalently, since the electric field is the force per unit charge, work / unit charge is electric field * distance. That is, V = E * d.

• Capacitance is Q / V, ratio of charge to voltage.

• Energy stored is .5 Q^2 / C, which is just the work required to move charge Q across the plates with the 'average' voltage .5 Q / C (also obtained by integrating `dW = `dQ * V = `dq * q / C from q=0 to q = Q).

• The dielectric increases capacitance by reducing the electric field, which thereby reduces the voltage between plates. The electric field will be 1 / k times as great, meaning 1/k times the voltage at any given separation.

For the present situation we halve the separation of the plates and insert a dielectric with constant k.

For a given Q, then, the electric field is fixed so that halving the separation d halves the voltage V = E * d.

Halving the voltage V doubles the capacitance Q / V.

Then inserting the dielectric reduces the field E, thereby reducing the voltage and increasing the capacitance by factor k.

Thus the capacitance increases by factor 2 k.

For given Q, this will decrease the stored energy .5 Q^2 / C by factor 2 k. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Your work looks very good. Let me know if you have any questions. &#