#$&*
course Phy 122
Copy this document, from this point to the end, into a word processor or text editor. •Follow the instructions, fill in your data and the results of your analysis in the given format.
• Regularly save your document to your computer as you work.
• When you have completed your work:
Copy the document into a text editor (e.g., Notepad; but NOT into a word processor or html editor, e.g., NOT into Word or FrontPage).
Highlight the contents of the text editor, and copy and paste those contents into the indicated box at the end of this form.
Click the Submit button and save your form confirmation.
Data program is at http://www.vhcc.edu/dsmith/genInfo/labrynth_created_fall_05/levl1_15\levl2_51/dataProgram.
exe
________________________________________
You can use the bottle, stopper and tubes as a very sensitive thermometer. This thermometer will have excellent precision, clearly registering temperature changes on the order of .01 degree. The system will also demonstrate a very basic thermal engine and its thermodynamic properties.
Set up your system with a vertical tube and a pressure-indicating tube, as in the experiment on measuring atmospheric pressure. There should be half a liter or so of water in the bottom of the container.
• Refer back to the experiment 'Measuring Atmospheric Pressure' for a detailed description of how the pressure-indicating tube is constructed for the 'stopper' version of the experiment.
For the bottle-cap version, the pressure-indicating tube is the second-longest tube. The end inside the bottle should be open to the gas inside the bottle (a few cm of tube inside the bottle is sufficient) and the other end should be capped.
The figure below shows the basic shape of the tube; the left end extends down into the bottle and the capped end will be somewhere off to the right. The essential property of the tube is that when the pressure in the bottle increases, more force is exerted on the left-hand side of the 'plug' of liquid, which moves to the right until the compression of air in the 'plugged' end balances it. As long as the liquid 'plug' cannot 'leak' its liquid to the left or to the right, and as long as the air column in the plugged end is of significant length so it can be measured accurately, the tube is set up correctly.
If you pressurize the gas inside the tube, water will rise accordingly in the vertical tube. If the temperature changes but the system is not otherwise tampered with, the pressure and hence the level of water in the tube will change accordingly.
When the tube is sealed, pressure is atmospheric and the system is unable to sustain a water column in the vertical tube. So the pressure must be increased. Various means exist for increasing the pressure in the system.
• You could squeeze the bottle and maintain enough pressure to support, for example, a 50 cm column. However the strength of your squeeze would vary over time and the height of the water column would end up varying in response to many factors not directly related to small temperature changes.
• You could compress the bottle using mechanical means, such as a clamp. This could work well for a flexible bottle such as the one you are using, but would not generalize to a typical rigid container.
• You could use a source of compressed air to pressurize the bottle. For the purposes of this experiment, a low pressure, on the order of a few thousand Pascals (a few hudredths of an atmosphere) would suffice.
The means we will choose is the low-pressure source, which is readily available to every living land animal. We all need to regularly, several times a minute, increase and decrease the pressure in our lungs in order to breathe. We're going to take advantage of this capacity and simply blow a little air into the bottle.
• Caution: The pressure you will need to exert and the amount of air you will need to blow into the system will both be less than that required to blow up a typical toy balloon. However, if you have a physical condition that makes it inadvisable for you to do this, let the instructor know. There is an alternative way to pressurize the system.
You recall that it takes a pretty good squeeze to raise air 50 cm in the bottle. You will be surprised at how much easier it is to use your diaphragm to accomplish the same thing. If you open the 'pressure valve', which in this case consists of removing the terminating cap from the third tube, you can then use the vertical tube as a 'drinking straw' to draw water up into it. Most people can easily manage a 50 cm; however don't take this as a challenge. This isn't a test of how far you can raise the water.
Instructions follow:
• Before you put your mouth on the tube, make sure it's clean and make sure there's nothing in the bottle you wouldn't want to drink. The bottle and the end of the tube can be cleaned, and you can run a cleaner through the tube (rubbing alcohol works well to sterilize the tube). If you're careful you aren't likely to ingest anything, but of course you want the end of the tube to be clean.
• Once the system is clean, just do this. Pull water up into the tube. While maintaining the water at a certain height, replace the cap on the pressure-valve tube and think for a minute about what's going to happen when you remove the tube from your mouth. Also think about what, if anything, is going to happen to the length of the air column at the end of the pressure-indicating tube. Then go ahead and remove the tube from your mouth and watch what happens.
Describe below what happens and what you expected to happen. Also indicate why you think this happens.
Nothing happens.
Now think about what will happen if you remove the cap from the pressure-valve tube. Will air escape from the system? Why would you or would you not expect it to do so?
Go ahead and remove the cap, and report your expectations and your observations below.
Air would escape and the water level would move.
Now replace the cap on the pressure-valve tube and, while keeping an eye on the air column in the pressure-indicating tube, blow just a little air through the vertical tube, making some bubbles in the water inside the tube. Blow enough that the air column in the pressure-indicating tube moves a little, but not more than half a centimeter or so. Then remove the tube from your mouth, keeping an eye on the pressure-indicating tube and also on the vertical tube.
• What happens?
• Why did the length of the air column in the pressure-indicating tube change length when you blew air into the system? Did the air column move back to its original position when you removed the tube from your mouth? Did it move at all when you did so?
• What happened in the vertical tube?
• Why did all these things happen? Which would would you have anticipated, and which would you not have anticipated?
The pressure increased. Because the pressure changed, the air column did move back to its original position. I would have anticipated all of these things.
Place the thermometer that came with your kit near the bottle, with the bulb not touching any surface so that it is sure to measure the air temperature in the vicinity of the bottle and leave it alone until you need to read it.
Now you will blow enough air into the bottle to raise water in the vertical tube to a position a little ways above the top of the bottle.
• Use the pressure-valve tube to equalize the pressure once more with atmospheric (i.e., take the cap off). Measure the length of the air column in the pressure-indicating tube, and as you did before place a measuring device in the vicinity of the meniscus in this tube.
• Replace the cap on the pressure-valve tube and again blow a little bit of air into the bottle through the vertical tube. Remove the tube from your mouth and see how far the water column rises. Blow in a little more air and remove the tube from your mouth. Repeat until water has reached a level about 10 cm above the top of the bottle.
• Place the bottle in a pan, a bowl or a basin to catch the water you will soon pour over it.
• Secure the vertical tube in a vertical or nearly-vertical position.
The water column is now supported by excess pressure in the bottle. This excess pressure is between a few hundredths and a tenth of an atmosphere.
The pressure in the bottle is probably in the range from 103 kPa to 110 kPa, depending on your altitude above sea level and on how high you chose to make the water column. You are going to make a few estimates, using 100 kPa as the approximate round-number pressure in the bottle, and 300 K as the approximate round-number air temperature. Using these ball-park figures:
• If gas pressure in the bottle changed by 1%, by how many N/m^2 would it change?
• What would be the corresponding change in the height of the supported air column?
• By what percent would air temperature have to change to result in this change in pressure, assuming that the container volume remains constant?
Report your numbers in the first three lines below, one number to a line, then starting in the fourth line explain how you made your estimates:
Everything would change by 1%.
#$&*
Continuing the above assumptions:
• How many degrees of temperature change would correspond to a 1% change in temperature?
• How much pressure change would correspond to a 1 degree change in temperature?
• By how much would the vertical position of the water column change with a 1 degree change in temperature?
Report your three numerical estimates in the first three lines below, one number to a line, then starting in the fourth line explain how you made your estimates:
2degrees, 10pascals, 1 inch.
• How much temperature change would correspond to a 1 cm difference in the height of the column?
• How much temperature change would correspond to a 1 mm difference in the height of the column?
Report your two numerical estimates in the first two lines below, one number to a line, then starting in the third line explain how you made your estimates:
2 degrees, .5degrees
Your instructor is trying to gauge the typical time spent by students on these experiments. Please answer the following question as accurately as you can, understanding that your answer will be used only for the stated purpose and has no bearing on your grades:
• Approximately how long did it take you to complete this experiment?
1hour
"
Self-critique (if necessary):
------------------------------------------------
Self-critique rating: