querry 23-34

#$&*

course mth158

august 4

023. `* 23

*********************************************

Question: * 3.3.16 (was 3.2.6). Key pts and behavior: far left incr, far right incr, zeros at -10, 5, 0, 5, peaks at (-8,-4), (-2, 6), (2, 10). Local min, max among listed points. List the intervals on which the function is decreasing.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The function decreases until (-8, -4), then increases at (-2, 6).

The function then decreases at (5, 0)

The graph is decreasing on (-infinity, -8), on (-2, 0) and on (2, 5)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The function decreases until reaching the local min at (-8, -4), then increases until reaching the local max at (-2, 6).

The function then decreases to its local min at (5, 0), after which it continues increasing.

So the graph is decreasing on (-infinity, -8), on (-2, 0) and on (2, 5). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 3.3.22 (was 3.2.12). Piecewise linear (-3,3) to (-1,0) to (0,2) to (1,0) to (3,3).Give the intercepts of the function.Give the domain and range of the function.Give the intervals on which the function is increasing, decreasing, and constant.Tell whether the function is even, odd or neither.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The function decreases from (-3,3) to (-1,0) so it is decreasing on the interval (-3, -1).

The function decreases from (0, 2) to (1, 0) so it is decreasing on the interval (0, 1).

The function increases from (-1,0) to (0, 2) so it is increasing on the interval (-1, 0).

The function ioncreases from (1,0) to (3, 3) so it is increasing on the interval (1, 3).

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The function intersects the x axis at (-1, 0) and (1, 0), and the y axis at (0, 2).

The function decreases from (-3,3) to (-1,0) so it is decreasing on the interval (-3, -1).

The function decreases from (0, 2) to (1, 0) so it is decreasing on the interval (0, 1).

The function increases from (-1,0) to (0, 2) so it is increasing on the interval (-1, 0).

The function ioncreases from (1,0) to (3, 3) so it is increasing on the interval (1, 3).

The domain of the function is the set of possible x values, so the domain is -3 <= x <= 3, written as the interval [-3, 3].

The range of the function is the set of possible y values, so the range is 0 <= y <= 3, written as the interval [0, 3].

The function is symmetric about the y axis, with f(-x) = f(x) for every x (e.g., f(-3) = f(3) = 3; f(-1) = f(1) = 0; etc.). So the function is even. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 3.3.28 (was 3.2.18). Piecewise linear (-3,-2) to (-2, 1) to (0, 1) to (2, 2) to (3, 0)Give the intercepts of the function.Give the domain and range of the function.Give the intervals on which the function is increasing, decreasing, and constant.Tell whether the function is even, odd or neither.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The function decreases from (2,2) to (3,0) so it is decreasing on the interval (2,3).

The function increases from (-3,-2) to (-2, 1) so it is increasing on the interval (-3, -2).

The function ioncreases from (0, 1) to (2, 2) so it is increasing on the interval (0, 2).

The function value does not change between (-2, 1) and (0, 1) so the function is constant on (-2, 0).

The domain of the function is the set of possible x values, so the domain is -3 <= x <= 3, written as the interval [-3, 3].

The range of the function is the set of possible y values, so the range is -2 <= y <= 2, written as the interval [-2, 2].

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The function intersects the x axis at (-2.25, 0) and (3, 0), and the y axis at (0, 1).

The function decreases from (2,2) to (3,0) so it is decreasing on the interval (2,3).

The function increases from (-3,-2) to (-2, 1) so it is increasing on the interval (-3, -2).

The function ioncreases from (0, 1) to (2, 2) so it is increasing on the interval (0, 2).

The function value does not change between (-2, 1) and (0, 1) so the function is constant on (-2, 0).

The domain of the function is the set of possible x values, so the domain is -3 <= x <= 3, written as the interval [-3, 3].

The range of the function is the set of possible y values, so the range is -2 <= y <= 2, written as the interval [-2, 2].

The function is not symmetric about the y axis, with f(-x) not equal to f(x) for many values of x; e.g., f(-3) is -2 and f(3) is 0. So the function is not even.

x = 3 shows us that the function is not odd either, since for an odd function f(-x) = -f(x) and for x = 3 this is not the case. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 3.3.32 (was 3.2.24). sine-type fn (-pi,-1) to (0, 2) to (pi, -1).At what numbers does the function have a local max and what are these local maxima?At what numbers does the function have a local min and what are these local minima?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Local maximum is (0,1)

Local minimum are (-pi,-1) and (pi,-1)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Local maximum is (0,1)

Local minimum are (-pi,-1) and (pi,-1) **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 3.3.76 / 46 (was 3.2.36) (f(x) - f(1) ) / (x - 1) for f(x) = x - 2 x^2

What is your expression for (f(x) - f(1) ) / (x - 1) and how did you get this expression?

How did you use your result to get the ave rate of change from x = 1 to x = 2, and what is your value?

What is the equation of the secant line from the x = 1 point to the x = 2 point?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

f(x) - f(1) = (x-2x^2) - (-1) = -2 x^2 + x + 1.

Factors into (2x + 1) ( -x + 1).

Since -x + 1 = - ( x - 1) then

(f(x) - f(1) ) / ( x - 1) = (2x + 1) ( -x + 1) / (x - 1) = (2x + 1) * -1 = - (2x + 1).

For x = 2 the expression -(2x + 1) gives is ( f(2) - f(1) ) / ( 2 - 1), which is the slope from (1, f(1) ) to (2, f(2)) .

-(2 * 2 + 1) = -5, = slope

The secant line = (1, -1) and has slope 5. So the equation of the secant line is

(y - (-1) ) = -5 * (x - 1)

y = -5 x + 4.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * f(x) - f(1) = (x-2x^2) - (-1) = -2 x^2 + x + 1.

This factors into (2x + 1) ( -x + 1).

Since -x + 1 = - ( x - 1) we obtain

(f(x) - f(1) ) / ( x - 1) = (2x + 1) ( -x + 1) / (x - 1) = (2x + 1) * -1 = - (2x + 1).

A secant line runs from one point of the graph to another. The secant line here runs from the graph point (1, f(1) ) to the graph ponit ( x , f(x) ), and the expression we have just obtained is the slope of the secant line.

For x = 2 the expression -(2x + 1) gives us ( f(2) - f(1) ) / ( 2 - 1), which is the slope of the line from (1, f(1) ) to (2, f(2)) .

-(2 * 2 + 1) = -5, which is the desired slope.

The secant line contains the point (1, -1) and has slope 5. So the equation of the secant line is

(y - (-1) ) = -5 * (x - 1), which we solve to obtain

y = -5 x + 4. **

STUDENT QUESTION 100724

I'm OK up to the point where ( f(x) - f(1) ) / (x - 1) = - ( 2 x + 1 ).

Beyond that, I don't know where to go and can't follow the given solution.

INSTRUCTOR RESPONSE

You appear to understand the expression (f(x) - f(1) ) / (x - 1), and you appear to know how to simplify the resulting numerator, factor, and simplify the resulting expression. That's a very good start.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 3.3.36 / 50 (was 3.2.40). h(x) = 3 x^3 + 5. Is the function even, odd or neither? How did you determine algebraically that this is the case?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

h(x) = 3x^3 +5

h(-x) = 3-x^3 +5

= -3x^3 + 5

h(x) is not equal to h(-x), which means that the function is not even.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * h(x) = 3x^3 +5

h(-x) = 3-x^3 +5

= -3x^3 + 5

h(x) is not equal to h(-x), which means that the function is not even.

h(x) is not equal to -h(-x), since 3 x^3 + 5 is not equal to - ( -3x^3 + 5) = 3 x^3 - 5. So the function is not odd either. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 3.4.20 (was 3.3.12).

Does your sketch of f(x) = sqrt(x) increase or decrease, and does it do so at an increasing or decreasing rate?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

It is increasing at a decreasing rate.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * y = sqrt(x) takes y values sqrt(0), sqrt(2) and sqrt(4) at x = 0, 2 and 4.

sqrt(0) = 0, sqrt(2) = 1.414 approx., and sqrt(4) = 2.

The change in y from the x = 0 to the x = 2 point is about 1.414; the change from the x = 2 to the x = 4 point is about .586. The y values therefore increase, but by less with each 'jump' in x.

So the graph contains points (0,0), (2, 1.414) and (4, 2) and is increasing at a decreasing rate. **

What three points did you label on your graph?

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 3.4.34 / 24 (was 3.3.24) f(x) = 2x+5 on (-3,0), -3 at 0, -5x for x>0.

Given the intercepts, domain and range of the function

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * From x = -3 to x = 0 the graph coincides with that of y = 2 x + 5. The graph of y = 2x + 5 has y intercept 5 and slope 2, and its x intecept occurs when y = 0. The x intercept therefore occurs at

2x + 5 = 0 or x = -5/2.

Since this x value is in the interval from -3 to 0 it is part of the graph.

At x = -3 we have y = 2 * (-3) + 5 = -1.

So the straight line which depicted y = 2x + 5 passes through the points (-3, -1), (-5/2, 0) and (0, 5).

The part of this graph for which -3 < x < 0 starts at (-3, -1) and goes right up to (0, 5), but does not include (0, 5).

For x > 0 the value of the function is -5x. The graph of -5x passes through the origin and has slope -5. The part of the graph for which x > 0 includes all points of the y = -5x graph which lie to the right of the origin, but does not include the origin.

For x = 0 the value of the function is given as -3. So the graph will include the single point (0, -3). **

STUDENT COMMENT

I cant get a grasp on the domain and range. I've studied it in the book its just not sinking in yet.

INSTRUCTOR RESPONSE

The function is defined for x values on the interval (-3, 0), at x = 0 and for x > 0. So the function is defined for all x values which are greater than 3. Thus the domain of this function in the interval (-3, infinity).

The range is the set of all possible values of f(x), where x can be any number in the domain.

On the interval from x = -3 to x = 0 the function coincides with the function y = 2 x + 5. A graph of y = 2 x + 5 would be linear, increasing at a constant rate from 2 * (-3) + 5 = -1 at x = -3 to 2 * 0 + 5 = 5 at x = 0. Our function f(x) is not equal to 2 x + 5 at x = -3 (where it is not defined), and at x = 0 it is assigned the value -3. However for all x values between -3 and 0 our function is equal to y = 2 x + 5, so it takes every value between -1 and 5.

For x > 0 the function coincides with y = - 5 x. This is a linear function, decreasing at a constant rate, whose value at x = 0 is 0. For x > 0 this linear function takes every possible negative value.

Our function f(x) therefore takes all values between -1 and 5, as well as all possible negative values. Thus is takes all values from -infinity to 5, not including 5. So its range is (-infinity, 5). Note that f(x) also takes the value -3 at x = 0, but that is already in the range (-infinity, 5) and doesn't add anything to the range.

The graph below depicts the linear functions y = 2x + 5, y = -5x and the point (0, -3):

The next figure depicts the function f(x) as the heavy green line segments and the dot over the point (0, -3):

The domain and range of the function are indicated by the red and blue rays on the x and y axes, respectively.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

025. `* 25

*********************************************

Question: * 3.5.12 (was 3.4.6). Upward parabola vertex (0, 2).

What equation matches this function?

The correct equation is y = x^2 + 2. How can you tell it isn't y = 2 x^2 + 2?. How can you tell it isn't y = (x+2)^2.

GOOD STUDENT ANSWERS:

it isnt y = 2x^2 + 2 because that would make it a verical stretch and it isnt vertical it is just a parabola.

it isnt y = (x+2)^2 because that would make it shift to the left two units and it did not.

INSTRUCTOR NOTE:

Good answers. Here is more detail:

The basic y = x^2 parabola has its vertex at (0, 0) and also passes through (-1, 1) and (1, 1).

y = 2 x^2 would stretch the basic y = x^2 parabola vertically by factor 2, which would move every point twice as far from the x axis. This would leave the vertex at (0, 0) unchanged and would move the points (-1, 1) and (1, 1) to (-1, 2) and (1, 2).

Then y = 2x^2 + 2 would shift this function vertically 2 units, so that the points (0, 0), (-1, 2) and (1, 2) would shift 2 units upward to (0, 2), (-1, 4) and (1, 4).

The resulting graph coincides with the given graph at the vertex but because of the vertical stretch it is too steep to match the given graph.

The function y = (x + 2)^2 shifts the basic y = x^2 parabola 2 units to the left so that the vertex would move to (-2, 0) and the points (-1, 1) and (1, 1) to (-3, 1) and (-1, 1). The resulting graph does not coincide with the given graph.

y = x^2 + 2 would shift the basic y = x^2 parabola vertically 2 units, so that the points (0, 0), (-1, 1) and (1, 1) would shift 2 units upward to (0, 2), (-1, 3) and (1, 3). These points do coincide with points on the given graph, so it is the y = x^2 + 2 function that we are looking for. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 3.5.16 (was 3.4.10). Downward parabola.

The correct equation is y = -2 x^2. How can you tell it isn't y = 2 x^2?. How can you tell it isn't y = - x^2?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The basic y = x^2 parabola has its vertex at (0, 0) and also passes through (-1, 1) and (1, 1).

y = -x^2 would stretch the basic y = x^2 parabola vertically by factor -1, which would move every point to another point which is the same distance from the x axis but on the other side. This would leave the vertex at (0, 0) unchanged and would move the points (-1, 1) and (1, 1) to (-1, -1) and (1, -1).

y = -2 x^2 would stretch the basic y = x^2 parabola vertically by factor -2, which would move every point to another point which is twice the distance from the x axis but on the other side. This would leave the vertex at (0, 0) unchanged and would move the points (-1, 1) and (1, 1) to (-1, -2) and (1, -2). This graph coincides with the given graph.

y = 2 x^2 would stretch the basic y = x^2 parabola vertically by factor 2, which would move every point twice the distance from the x axis and on the same side. This would leave the vertex at (0, 0) unchanged and would move the points (-1, 1) and (1, 1) to (-1, 2) and (1, 2). This graph is on the wrong side of the x axis from the given graph. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 3.5.18 (was 3.4.12). V with vertex at origin.

What equation matches this function?

The correct equation is y = 2 | x | . How can you tell it isn't y = | x | ?. How can you tell it isn't y = | x | + 2?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The basic y = | x | graph is in the shape of a V with a 'vertex' at (0, 0) and also passes through (-1, 1) and (1, 1).

The given graph has the point of the V at the origin but passes above (-1, 1) and (1, 1).

y = | x | + 2 would shift the basic y = | x | graph vertically 2 units, so that the points (0, 0), (-1, 1) and (1, 1) would shift 2 units upward to (0, 2), (-1, 3) and (1, 3). The point of the V would lie at (0, 2). None of these points coincide with points on the given graph

y = 2 | x | would stretch the basic y = | x | graph vertically by factor 2, which would move every point twice the distance from the x axis and on the same side. This would leave the point of the 'V' at (0, 0) unchanged and would move the points (-1, 1) and (1, 1) to (-1, 2) and (1, 2). This graph coincides with the given graph. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: