#$&*
course Phy 122
1/21 10 am
ph2 query 0Most queries in this course will ask you questions about class notes, readings, text problems and experiments. Since the first two assignments have been lab-related, the first two queries are related to the those exercises. While the remaining queries in this course are in question-answer format, the first two will be in the form of open-ended questions. Interpret these questions and answer them as best you can.
Different first-semester courses address the issues of experimental precision, experimental error, reporting of results and analysis in different ways and at different levels. One purpose of these initial lab exercises is to familiarize your instructor with your work and you with the instructor 's expectations.
Comment on your experience with the three lab exercises you encountered in this assignment or in recent assignments.
*********************************************
Question: This question, related to the use of the TIMER program in an experimental situation, is posed in terms of a familiar first-semester system.
Suppose you use a computer timer to time a steel ball 1 inch in diameter rolling down a straight wooden incline about 50 cm long. If the computer timer indicates that on five trials the times of an object down an incline are 2.42sec, 2.56 sec, 2.38 sec, 2.47 sec and 2.31 sec, then to what extent do you think the discrepancies could be explained by each of the following:
· The lack of precision of the TIMER program.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
I do not think it would majorly be due to the lack of precision of the TIMER program. I do recall that many of the numbers associated with the tenths, hundredths, thousandths and so on repeat, but I don't believe that that causes too much conflict. Therefore I believe that there would be a very low degree of discrepancies due to this factor.
#$&*
· The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
I believe this would be a more promenant factor that contributes to the discrepancies of the trials. It is sometimes difficult to hit the computer mouse at the exact same time you intend to hit it, so I believe that a larger degree of discrepancies would be due to this factor.
#$&*
· Actual differences in the time required for the object to travel the same distance.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
I believe that this would have a low degree of discrepancies, given that each trial was conducted with the exact same varaibles present.
#$&*
· Differences in positioning the object prior to release.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
This could be a probable cause of the discrepancies of the system because it is sometimes very difficult to release the ball at the same exact position every time, especially if that position is not properly marked or labeled.
#$&*
· Human uncertainty in observing exactly when the object reached the end of the incline.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
I would say this is the major cause of the discrepancies. Human uncertainty for matters such as these can be a major factor in the resulting times that do not match up exactly.
#$&*
*********************************************
Question: How much uncertainty do you think each of the following would actually contribute to the uncertainty in timing a number of trials for the ball-down-an-incline lab?
· The lack of precision of the TIMER program.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
I don't believe this would be a major contributing factor to the uncertainty of the lab, it could be a factor, but I would say that it would be one that could almost go unnoticed.
#$&*
· The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
I believe that it would be a present factor, but not the biggest in contributing to the uncertainty.
#$&*
· Actual differences in the time required for the object to travel the same distance.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
I believe this would be the least likely, given that it would be the exact same setup.
#$&*
· Differences in positioning the object prior to release.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
I believe this would be a likely factor that would contribute to the uncertainty in the lab.
#$&*
· Human uncertainty in observing exactly when the object reached the end of the incline.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
I believe this would be the most likely contributor to the uncertainty of the lab. It is difficult to decipher when the ball reaches the end of the incline without having some uncertainty mixed in with it.
#$&*
*********************************************
Question: What, if anything, could you do about the uncertainty due to each of the following? Address each specifically.
· The lack of precision of the TIMER program.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
I don't know if I could do anything to change the uncertainty due to this factor. And even if I could, I do not believe it would even be that much of an issue that needed to be fixed.
#$&*
· The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
I suppose I could go through a few trial runs of hitting the mouse at the exact time I detected a starting point and ending point. They say practice makes perfect!
#$&*
· Actual differences in the time required for the object to travel the same distance.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
I could make sure that the system doesn't move, and if it does, make sure that it is positioned in its original place.
#$&*
· Differences in positioning the object prior to release.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
I could make a mark on the ramp to make sure that I am letting it start from the exact same place each trial.
#$&*
· Human uncertainty in observing exactly when the object reached the end of the incline.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
I could practice watching the ball roll to the end, or I could even set up something at the bottom that makes a noise to trigger my mind that it is at the end to accurately mark the end of the ball's roll.
#$&*
"
Your work looks good. Let me know if you have any questions.