course Phys 201 ԓݧ̇Oassignment #023
......!!!!!!!!...................................
12:45:54 `q001. Note that this assignment contains 3 questions. . A chain 200 cm long has a density of 15 g/cm. Part of the chain lies on a tabletop, with which it has a coefficient of friction equal to .10. The other part of the chain hangs over the edge of the tabletop. If 50 cm of chain hang over the edge of the tabletop, what will be the acceleration of the chain?
......!!!!!!!!...................................
RESPONSE --> 50cm*15g/cm=750g=.75kg 9.8m/s^2*.75kg=7.3N of the chain hanging 9.8 m/s^2*2.25kg=22N on the table .10*22N=2.1N Fnet= 7.3N+(-2.1N) =5.2N a=F/m =5.2N/3kg =1.73m/s^2 confidence assessment: 2
.................................................
......!!!!!!!!...................................
12:46:10 The part of the chain hanging over the edge of the table will experience an unbalanced force from gravity and will therefore tend to accelerate chain in the direction of the hanging portion. The remainder of the chain will also experience the gravitational force, but this force will be countered by the upward force exerted on the chain by the table. The force between the chain and the table will give rise to a frictional force which will resist motion toward the hanging portion of the chain. If 50 cm of chain hang over the edge of the tabletop, then we have 50 cm * (15 g/cm) = 750 grams = .75 kg of chain hanging over the edge. Gravity will exert a force of 9.8 meters/second ^ 2 * .75 kg = 7.3 Newtons of force on this mass, and this force will tend to accelerate the chain. The remaining 150 cm of chain lie on the tabletop. This portion of the chain has a mass which is easily shown to be 2.25 kg, so gravity exerts a force of approximately 21 Newtons on this portion of the chain. The tabletop pushes backup with a 21 Newton force, and this force between tabletop and chain results in a frictional force of .10 * 21 Newtons = 2.1 Newtons. We thus have the 7.3 Newton gravitational force on the hanging portion of the chain, resisted by the 2.1 Newton force of friction to give is a net force of 5.2 Newtons. Since the chain has a total mass of 3 kg, this net force results in an acceleration of 5.2 N / (3 kg) = 1.7 meters/second ^ 2, approximately.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
12:48:41 `q002. What is the maximum length of chain that can hang over the edge before the chain begins accelerating?
......!!!!!!!!...................................
RESPONSE --> confidence assessment: 3
.................................................
......!!!!!!!!...................................
12:48:45 The maximum length that can hang over is the length for which the frictional force opposing motion is precisely equal to the gravitational force on the hanging portion of the chain. If x stands for the length in cm of the portion of chain hanging over the edge of the table, then the mass of the length is x * .015 kg / cm and it experiences a gravitational force of (x * .015 kg / cm) * 9.8 m/s^2 = x * .147 N / cm. The portion of chain remaining on the tabletop is 200 cm - x. The mass of this portion is (200 cm - x) * .015 kg / cm and gravity exerts a force of (200 cm - x) * .015 kg / cm * 9.8 meters/second ^ 2 = .147 N / cm * (200 cm - x) on this portion. This will result in a frictional force of .10 * .147 N / cm * (200 cm - x) = .0147 N / cm * (200 cm - x). Since the maximum length that can hang over is the length for which the frictional force opposing motion is precisely equal to the gravitational force on the hanging portion of the chain, we set the to forces equal and solve for x. Our equation is .0147 N / cm * (200 cm - x) = .147 N/cm * x. Dividing both sides by .0147 N/cm we obtain 200 cm - x = 10 * x. Adding x to both sides we obtain 200 cm = 11 x so that x = 200 cm / 11 = 18 cm, approx..
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
12:52:12 `q003. The air resistance encountered by a certain falling object of mass 5 kg is given in Newtons by the formula F = .125 v^2, where the force F is in Newtons when the velocity v is in meters/second. As the object falls its velocity increases, and keeps increasing as it approaches its terminal velocity at which the net force on the falling object is zero, which by Newton's Second Law results in zero acceleration and hence in constant velocity. What is the terminal velocity of this object?
......!!!!!!!!...................................
RESPONSE --> 5kg*9.8m/s^2=49N sqrt. v^2=sqrt. (49N/.125N)=392m/s =sqrt. 392 =19.79m/s confidence assessment: 3
.................................................
......!!!!!!!!...................................
12:52:21 Only two forces act on this object, the downward force exerted on it by gravity and the upward force exerted by air resistance. The downward force exerted by gravity remains constant at 5 kg * 9.8 meters/second ^ 2 = 49 Newtons. When this force is equal to the .125 v^2 Newton force of friction the object will be at terminal velocity. Setting .125 v^2 Newtons = 49 Newtons, we divide both sides by .125 Newtons to obtain v^2 = 49 Newtons/(.125 Newtons) = 392. Taking square roots we obtain v = `sqrt (392) = 19.8, which represents 19.8 meters/second.
......!!!!!!!!...................................
RESPONSE --> i understand this problem self critique assessment: 3
.................................................
yFy`Ƀn assignment #024 024. Centripetal Acceleration Physics II 05-13-2009
......!!!!!!!!...................................
13:19:58 `q001. Note that this assignment contains 4 questions. . Note that this assignment contains 4 questions. When an object moves a constant speed around a circle a force is necessary to keep changing its direction of motion. This is because any change in the direction of motion entails a change in the velocity of the object. This is because velocity is a vector quantity, and if the direction of a vector changes, then the vector and hence the velocity has changed. The acceleration of an object moving with constant speed v around a circle of radius r has magnitude v^2 / r, and the acceleration is directed toward the center of the circle. This results from a force directed toward the center of the circle. Such a force is called a centripetal (meaning toward the center) force, and the acceleration is called a centripetal acceleration. If a 12 kg mass travels at three meters/second around a circle of radius five meters, what centripetal force is required?
......!!!!!!!!...................................
RESPONSE --> m=12kg v=3 m/s r=5m V^2/r=3m/s^2/5m =9m/s/5m =1.8m/s Fcent=12kg*1.8m/s confidence assessment: 3
.................................................
......!!!!!!!!...................................
13:20:06 The centripetal acceleration of the object is v^2 / r = (3 meters/second) ^ 2/(5 meters) = 1.8 meters/second ^ 2. The centripetal force, by Newton's Second Law, must therefore be Fcent = 12 kg * 1.8 meters/second ^ 2.
......!!!!!!!!...................................
RESPONSE --> i understand this question self critique assessment: 3
.................................................
......!!!!!!!!...................................
13:29:36 `q002. How fast must a 50 g mass at the end of a string of length 70 cm be spun in a circular path in order to break the string, which has a breaking strength of 25 Newtons?
......!!!!!!!!...................................
RESPONSE --> m=.05kg ds=.7m F=25N F=m*v^2/r v=sqrt. (F*r)/m) =sqrt. (25N*.7m)/.05) =sqrt.(17.5m/.05) =sqrt. 350Nm =18.71m/s confidence assessment: 3
.................................................
......!!!!!!!!...................................
13:29:41 The centripetal acceleration as speed v will be v^2 / r, where r = 70 cm = .7 meters. The centripetal force will therefore be m v^2 / r, where m is the 50 g = .05 kg mass. If F stands for the 25 Newton breaking force, then we have m v^2 / r = F, which we solve for v to obtain v = `sqrt(F * r / m). Substituting the given values we obtain v = `sqrt( 25 N * .7 meters / (.05 kg) ) = `sqrt( 25 kg m/s^2 * .7 m / (.05 kg) ) = `sqrt(350 m^2 / s^2) = 18.7 m/s.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
13:34:38 `q003. What is the maximum number of times per second the mass in the preceding problem can travel around its circular path before the string breaks?
......!!!!!!!!...................................
RESPONSE --> v=18.7m/s r=.7m 2pi*r=2(3.14)*(.7m) =6.28*.7m =4.39m 18.7m/s/4.39m=4.25m every second. confidence assessment: 3
.................................................
......!!!!!!!!...................................
13:34:42 The maximum possible speed of the mass was found in the preceding problem to be 18.7 meters/second. The path of the mass is a circle of radius 70 cm = .7 meters. The distance traveled along this path in a single revolution is 2 `pi r = 2 `pi * .7 meters = 4.4 meters, approximately. At 18.7 meters/second, the mass will travel around the circle 18.7/4.4 = 4.25 times every second.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
13:36:35 `q004. Explain in terms of basic intuition why a force is required to keep a mass traveling any circular path.
......!!!!!!!!...................................
RESPONSE --> There needs o be some sort of push in the same direction. If it wasn't there, the object would just contiue in a straight line. confidence assessment: 3
.................................................
......!!!!!!!!...................................
13:36:46 We simply can't change the direction of motion of a massive object without giving it some sort of a push. Without such a force an object in motion will remain in motion along a straight line and with no change in speed. If your car coasts in a circular path, friction between the tires and the road surface pushes the car toward the center of the circle, allowing it to maintain its circular path. If you try to go too fast, friction won't be strong enough to keep you in the circular path and you will skid out of the circle. In order to maintain a circular orbit around the Earth, a satellite requires the force of gravity to keep pulling it toward the center of the circle. The satellite must travel at a speed v such that v^2 / r is equal to the acceleration provided by Earth's gravitational field.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
course Phys 201 ԓݧ̇Oassignment #023
......!!!!!!!!...................................
12:45:54 `q001. Note that this assignment contains 3 questions. . A chain 200 cm long has a density of 15 g/cm. Part of the chain lies on a tabletop, with which it has a coefficient of friction equal to .10. The other part of the chain hangs over the edge of the tabletop. If 50 cm of chain hang over the edge of the tabletop, what will be the acceleration of the chain?
......!!!!!!!!...................................
RESPONSE --> 50cm*15g/cm=750g=.75kg 9.8m/s^2*.75kg=7.3N of the chain hanging 9.8 m/s^2*2.25kg=22N on the table .10*22N=2.1N Fnet= 7.3N+(-2.1N) =5.2N a=F/m =5.2N/3kg =1.73m/s^2 confidence assessment: 2
.................................................
......!!!!!!!!...................................
12:46:10 The part of the chain hanging over the edge of the table will experience an unbalanced force from gravity and will therefore tend to accelerate chain in the direction of the hanging portion. The remainder of the chain will also experience the gravitational force, but this force will be countered by the upward force exerted on the chain by the table. The force between the chain and the table will give rise to a frictional force which will resist motion toward the hanging portion of the chain. If 50 cm of chain hang over the edge of the tabletop, then we have 50 cm * (15 g/cm) = 750 grams = .75 kg of chain hanging over the edge. Gravity will exert a force of 9.8 meters/second ^ 2 * .75 kg = 7.3 Newtons of force on this mass, and this force will tend to accelerate the chain. The remaining 150 cm of chain lie on the tabletop. This portion of the chain has a mass which is easily shown to be 2.25 kg, so gravity exerts a force of approximately 21 Newtons on this portion of the chain. The tabletop pushes backup with a 21 Newton force, and this force between tabletop and chain results in a frictional force of .10 * 21 Newtons = 2.1 Newtons. We thus have the 7.3 Newton gravitational force on the hanging portion of the chain, resisted by the 2.1 Newton force of friction to give is a net force of 5.2 Newtons. Since the chain has a total mass of 3 kg, this net force results in an acceleration of 5.2 N / (3 kg) = 1.7 meters/second ^ 2, approximately.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
12:48:41 `q002. What is the maximum length of chain that can hang over the edge before the chain begins accelerating?
......!!!!!!!!...................................
RESPONSE --> confidence assessment: 3
.................................................
......!!!!!!!!...................................
12:48:45 The maximum length that can hang over is the length for which the frictional force opposing motion is precisely equal to the gravitational force on the hanging portion of the chain. If x stands for the length in cm of the portion of chain hanging over the edge of the table, then the mass of the length is x * .015 kg / cm and it experiences a gravitational force of (x * .015 kg / cm) * 9.8 m/s^2 = x * .147 N / cm. The portion of chain remaining on the tabletop is 200 cm - x. The mass of this portion is (200 cm - x) * .015 kg / cm and gravity exerts a force of (200 cm - x) * .015 kg / cm * 9.8 meters/second ^ 2 = .147 N / cm * (200 cm - x) on this portion. This will result in a frictional force of .10 * .147 N / cm * (200 cm - x) = .0147 N / cm * (200 cm - x). Since the maximum length that can hang over is the length for which the frictional force opposing motion is precisely equal to the gravitational force on the hanging portion of the chain, we set the to forces equal and solve for x. Our equation is .0147 N / cm * (200 cm - x) = .147 N/cm * x. Dividing both sides by .0147 N/cm we obtain 200 cm - x = 10 * x. Adding x to both sides we obtain 200 cm = 11 x so that x = 200 cm / 11 = 18 cm, approx..
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
12:52:12 `q003. The air resistance encountered by a certain falling object of mass 5 kg is given in Newtons by the formula F = .125 v^2, where the force F is in Newtons when the velocity v is in meters/second. As the object falls its velocity increases, and keeps increasing as it approaches its terminal velocity at which the net force on the falling object is zero, which by Newton's Second Law results in zero acceleration and hence in constant velocity. What is the terminal velocity of this object?
......!!!!!!!!...................................
RESPONSE --> 5kg*9.8m/s^2=49N sqrt. v^2=sqrt. (49N/.125N)=392m/s =sqrt. 392 =19.79m/s confidence assessment: 3
.................................................
......!!!!!!!!...................................
12:52:21 Only two forces act on this object, the downward force exerted on it by gravity and the upward force exerted by air resistance. The downward force exerted by gravity remains constant at 5 kg * 9.8 meters/second ^ 2 = 49 Newtons. When this force is equal to the .125 v^2 Newton force of friction the object will be at terminal velocity. Setting .125 v^2 Newtons = 49 Newtons, we divide both sides by .125 Newtons to obtain v^2 = 49 Newtons/(.125 Newtons) = 392. Taking square roots we obtain v = `sqrt (392) = 19.8, which represents 19.8 meters/second.
......!!!!!!!!...................................
RESPONSE --> i understand this problem self critique assessment: 3
.................................................
yFy`Ƀn assignment #024 024. Centripetal Acceleration Physics II 05-13-2009
......!!!!!!!!...................................
13:19:58 `q001. Note that this assignment contains 4 questions. . Note that this assignment contains 4 questions. When an object moves a constant speed around a circle a force is necessary to keep changing its direction of motion. This is because any change in the direction of motion entails a change in the velocity of the object. This is because velocity is a vector quantity, and if the direction of a vector changes, then the vector and hence the velocity has changed. The acceleration of an object moving with constant speed v around a circle of radius r has magnitude v^2 / r, and the acceleration is directed toward the center of the circle. This results from a force directed toward the center of the circle. Such a force is called a centripetal (meaning toward the center) force, and the acceleration is called a centripetal acceleration. If a 12 kg mass travels at three meters/second around a circle of radius five meters, what centripetal force is required?
......!!!!!!!!...................................
RESPONSE --> m=12kg v=3 m/s r=5m V^2/r=3m/s^2/5m =9m/s/5m =1.8m/s Fcent=12kg*1.8m/s confidence assessment: 3
.................................................
......!!!!!!!!...................................
13:20:06 The centripetal acceleration of the object is v^2 / r = (3 meters/second) ^ 2/(5 meters) = 1.8 meters/second ^ 2. The centripetal force, by Newton's Second Law, must therefore be Fcent = 12 kg * 1.8 meters/second ^ 2.
......!!!!!!!!...................................
RESPONSE --> i understand this question self critique assessment: 3
.................................................
......!!!!!!!!...................................
13:29:36 `q002. How fast must a 50 g mass at the end of a string of length 70 cm be spun in a circular path in order to break the string, which has a breaking strength of 25 Newtons?
......!!!!!!!!...................................
RESPONSE --> m=.05kg ds=.7m F=25N F=m*v^2/r v=sqrt. (F*r)/m) =sqrt. (25N*.7m)/.05) =sqrt.(17.5m/.05) =sqrt. 350Nm =18.71m/s confidence assessment: 3
.................................................
......!!!!!!!!...................................
13:29:41 The centripetal acceleration as speed v will be v^2 / r, where r = 70 cm = .7 meters. The centripetal force will therefore be m v^2 / r, where m is the 50 g = .05 kg mass. If F stands for the 25 Newton breaking force, then we have m v^2 / r = F, which we solve for v to obtain v = `sqrt(F * r / m). Substituting the given values we obtain v = `sqrt( 25 N * .7 meters / (.05 kg) ) = `sqrt( 25 kg m/s^2 * .7 m / (.05 kg) ) = `sqrt(350 m^2 / s^2) = 18.7 m/s.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
13:34:38 `q003. What is the maximum number of times per second the mass in the preceding problem can travel around its circular path before the string breaks?
......!!!!!!!!...................................
RESPONSE --> v=18.7m/s r=.7m 2pi*r=2(3.14)*(.7m) =6.28*.7m =4.39m 18.7m/s/4.39m=4.25m every second. confidence assessment: 3
.................................................
......!!!!!!!!...................................
13:34:42 The maximum possible speed of the mass was found in the preceding problem to be 18.7 meters/second. The path of the mass is a circle of radius 70 cm = .7 meters. The distance traveled along this path in a single revolution is 2 `pi r = 2 `pi * .7 meters = 4.4 meters, approximately. At 18.7 meters/second, the mass will travel around the circle 18.7/4.4 = 4.25 times every second.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
13:36:35 `q004. Explain in terms of basic intuition why a force is required to keep a mass traveling any circular path.
......!!!!!!!!...................................
RESPONSE --> There needs o be some sort of push in the same direction. If it wasn't there, the object would just contiue in a straight line. confidence assessment: 3
.................................................
......!!!!!!!!...................................
13:36:46 We simply can't change the direction of motion of a massive object without giving it some sort of a push. Without such a force an object in motion will remain in motion along a straight line and with no change in speed. If your car coasts in a circular path, friction between the tires and the road surface pushes the car toward the center of the circle, allowing it to maintain its circular path. If you try to go too fast, friction won't be strong enough to keep you in the circular path and you will skid out of the circle. In order to maintain a circular orbit around the Earth, a satellite requires the force of gravity to keep pulling it toward the center of the circle. The satellite must travel at a speed v such that v^2 / r is equal to the acceleration provided by Earth's gravitational field.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................