' title: Chp 10 Query 5 #$&* course Mth 277 Very sorry i'm not able to figure out more of this, but with your assistance, I will hopefully know how to start it and re-submit the form.submitted 10/28 5
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: If V(0) = <5,-2,4> and A(0) = <1,3,-9>, what is A_T and A_N at t = 0? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I gave all the numbers a value of i, j, and k. anyways A_t is (v dot a) / || v || and A_n is (V X A) / || V || for A_t I got ( i +3j -9k ) / sqrt(45)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: An object moves with a constant angular velocity omega around the circle x^2 + y^2 = r^2 in the xy-plane. Find a parameterization for the circle. Compute the tangential and normal acceleration for the object. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: going from the point (1,2) and (4,5) lets say (x,y) = (1,2) and (4,5) for 0<=t<=1 so (x,y) = (1,2) + t*(4,5) x= 1 + 4t y= 2 + 5t this would mean normal accel. is (ds/dt)^2/R I'm not sure what to evaluate in this? is this done? do i have to go further?
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Consider the vector function R(t) = <3 sin t, 4t, 3 cos t>. Evaluate V(t) = R'(t), N(t), and A(t) = R''(t) when t = 1. Find the vector projection of A(1) onto V(1). Denote this proj_V(1) (A(1)). Find the vector projection of A(1) onto N(1). Denote this proj_N(1) (A(1)). What is the sum of proj_V(1) (A(1)) and proj_N(1) (A(1)). How does proj_V(1) (A(1)) relate to A_T when t = 1. How does proj_N(1) (A(1)) relate to A_N when t = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: R'(1) is OK which is V(t) R''(1) is OK which is A(t) N(t) is || R' X R'' || / || R' || which came out to be 0.6i + 0j - 0.6k / 45.45
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Let B = T X N when T and N are the unit tangent and normal vectors to a curve C with position vector R. Show that dB/ds = T X (dN/ds). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: B represents Binormal vector. if a tangential vector is crossed with a Normal vector, then you get the binormal vector. likewise, if you take the rate at which the normal vector changes, and cross it with the tangential vector (which doesn't change at that position) then you will get the rate at which the binormal vector changes. I understand this fully, but as far as ""proving"" this, i'm having trouble starting this. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ________________________________________ #$&*