Assignment 9

#$&*

course Mth 174

7/19 12

********************

code 174

174

assignment # 9

......!!!!!!!!...................................

Questions from Problem Assignment:

 

*********************************************

Question:   

 problem 8.4.3 (3d edition 8.3.3)  (previously 8.2.6) moment of 2 meter rod with density `rho(x) = 2 + 6x g/m   

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

moment = mass * distance assuming x= 0 for the axis of rotation

 

moment of the mass in the increment is (2 + 6 x_i) * x_i

 

moment = int(x(2+6x), x, 0, 2)

moment = int(x(2+6x), x, 0, 2) = F(2) - F(0) = 20 g * m

 

 

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

 3

.............................................

Given Solution:

 

The mass of an increment of length `dx, with sample point x_i, is (2 + 6 x_i ) `dx.

 

 

The moment is mass * distance from axis of rotation.  Assuming axis of rotation x = 0:

 

 

The moment of the mass in the increment is (2 + 6 x_i) * x_i.

 

 

Setting up a Riemann sum and allowing the increment to approach zero, we obtain the integral

 

 

• moment = int(x(2+6x), x, 0, 2).

 

 

Thus the integrand is 2x + 6 x^2.  An antiderivative is F(x) = x^2 + 2 x^3, so the definite integral is

 

• moment = int(x(2+6x), x, 0, 2) = F(2) - F(0) = 20. 

 

The moment of the typical increment has units of mass/unit length * length * distance from axis, or (g / m) * m * m = g * m.

 

 

The units of the integral are therefore g * m, and the moment of this object is 20 g * m (i.e., 20 gram * meters).

 

 

ADDITIONAL INFORMATION (finding center of mass):

 

 

To get the center of mass relative to x = 0 (this was not requested here but you should know how to do this), divide the moment about x = 0 by the mass of the object:

 

 

The mass of the object is easily found to be int((2+6x), x, 0, 2) (see above for the mass increment, which leads to the Riemann sum then to the integral).

 

 

The center of mass is therefore

 

• center of mass = moment / mass = int(x(2+6x), x, 0, 2) / int((2+6x), x, 0, 2).

 

The integrand for the denominator is 2 + 6 x, antiderivative G(x) = 2x + 3 x^2 and definite integral G(2) - G(0) = 16 - 0 = 16, meaning that the object has mass 16 grams (more specifcally the units of the denominator will be units of mass / unit length * length = mass, or in this case g / m * m = g).

 

 

So the center of mass is at x = 20 g * m /(16 g) = 5/4 (g * m) / g = 5/4 g. **

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 OK

 

 

------------------------------------------------

Self-critique Rating:

 OK

*********************************************

Question:    problem 8.4.14 (4th edition 8.4.12 3d edition 8.3.12) mass between graph of f(x) and g(x), f > g, density `rho(x)

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Area = height * width = f(x) - g(x) * `dx

Density = `rho(x)

 

`dm = area * density

= (f(x) - g(x) ) * 'dx * `rho(x)

= `rho(x) (f(x) - g(x) ) * 'dx. 

 

int( `rho(x) * (f(x) - g(x)), x, a, b)                                           

 

 

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

 3

.............................................

Given Solution:

 

First you find the mass of a typical increment of width `dx, with sample point x within the interval. 

 

 

The mass is just area * density. 

 

 

The area of the region is height * width, or approximately (f(x) - g(x) ) * `dx.  The density is `rho(x) so you get the approximation

 

 

• `dm = area * density

• = (f(x) - g(x) ) * 'dx * `rho(x)

• = `rho(x) (f(x) - g(x) ) * 'dx. 

 

 

The Riemann sum is the sum of all such mass increments for a partition of the interval, and at the interval width `dx approaches 0 this sum approaches the integral

 

 

int( rho(x) * (f(x) - g(x)), x, a, b).                                              

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 OK

 

 

------------------------------------------------

Self-critique Rating:

 OK

*********************************************

Question:   

 

What is the mass of an increment at x coordinate x with width `dx?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

mass = area * density = (f(x) - g(x) ) * `dx * `rho(x) = `rho(x) (f(x) - g(x) ) * `dx  

 

 

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

 3

.............................................

Given Solution:

 

** You want to think of this as a simple product, just area * density.  The area of the region is height * width, or approximately (f(x) - g(x) ) * `dx.  The density is `rho(x) so you get the approximation

 

mass = area * density = (f(x) - g(x) ) * 'dx * `rho(x) = `rho(x) (f(x) - g(x) ) * 'dx. 

 

Note that `dx stands for delta-x, a finite but small interval and that it's f - g, not f + g.  **

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 OK

 

 

------------------------------------------------

Self-critique Rating:

 OK

*********************************************

Question:    problem 8.5.13 (4th edition 8.5. 12) (3d edition 8.4.12) 8.3.6 cylinder 20 ft high rad 6 ft full of water

 

......!!!!!!!!...................................

                                                  13:19:02

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Fi * dist_i = `rho g A 'dyi * (30 - y_i) = `rho g A  (30 - yi) 'dy_i 

int(`rho g A  (30 - y) , y, 0, 20)

`rho g A ( 30 y - y^2 / 2) 

= 100 rho g A

 

 

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

 

STUDENT SOLUTION:

 

 

delta W = delta F*(30-y)

delta W = (62.4)(volume)*(30-y)

delta W = 62.4*36*pi*delta y*(30-y)

delta W = (211718.211 - 7057.2737y)delta y

integral [0,20] (211718.211 - 7057.2737y)dy = 211718.211y - 3528.63685y^2

from 0 to 20 = 2,822,909,.48 ft-lb

 

 

INSTRUCTOR COMMENTARY

 

** For the ith interval, using F_i and dist_i for the force required to lift the water and the distance is must be lifted, `rho for the density and A for the cross-sectional area 36 `pi, the work is

 

• Fi * dist_i = `rho g A 'dyi * (30 - y_i) = `rho g A  (30 - yi) 'dy_i.

 

We thus have a Riemann sum of terms `rho g A  (30 - y_i) 'dy_i.

 

 

This sum approaches the integral

 

• int(`rho g A  (30 - y) dy between y = 0 and y = 20).

 

The limits are y = 0 and y = 20 because that's where the fluid represented by the terms `rho g A  (30 - y_i) 'dyi is (note that the tank for Problem 6 is full of water, not half full).  The 30-y_i is because it's getting pumped to height 30 ft.

 

 

Your antiderivative is `rho g A ( 30 y - y^2 / 2). 

 

 

At this point you can plug in your values for `rho, g and A, then evaluate 30 y - y^2 / 2 at the limits to get your answer.

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 

OK

 

 

------------------------------------------------

Self-critique Rating:

 OK

*********************************************

Question:     ****   query   8.5.31 (4th edition 8.5.30  3d edition problem 8.4.24)

 

What is the kinetic energy of a record mass of mass 50 g rad 10 cm rotating at 33 1/3 revolutions per minut?

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

area density = total mass / total area = 50 grams / total area = 50 grams / (pi * (10 cm)^2) = .16 grams / cm^2

circumference * width = 2 pi r_i* `dr 

dist / time = 2 pi r_i* (33 1/3 / (60 sec)) = 3.4 r_i*

total KE = integral(.5 ( 1.0 r) (3.4 r)^2 , r , 0, 10) 

= 15,000

 

 

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

 

** We partition the interval 0 <= r <= 10 cm between the center of the record and its rim. 

 

• An small interval of a partition will correspond to an interval of r.

• The part of the record for which the radius is within the partition consists of a thin ring of the disk.   For example if 3.4 cm < r < 3.5 cm is an interval of the partition, then the corresponding region of the disk is the ring which is also described by 3.4 cm < r < 3.5 cm.  This ring lies between the circle r = 3.4 cm and r = 3.5 cm; its 'width' is .1 cm and its 'average circumference' is somewhere between 2 pi * 3.4 cm (the circumference of the 'inner' circle) and 2 pi * 3.5 cm (the circumference of the 'outer' circle).

The 'area density' of the record (mass / unit area) is

 

• area density = total mass / total area = 50 grams / total area = 50 grams / (pi * (10 cm)^2) = .16 grams / cm^2, approx.

 

For a partition with interval width `dr, considering a typical interval with sample point r_i*:

 

• The corresponding 'ring' would have radius r_i* and width `dr. 

• Its area would be approximately circumference * width = 2 pi r_i* `dr.

 

 

• The mass of the typical slice would be area * density = .16 * 2 pi r_i* `dr = 1.0 r_i* `dr, approx..

 

• The speed of a point on the slice would be dist / time = 2 pi r_i* (33 1/3 / (60 sec)) = 3.4 r_i*, with speed in cm/s when radius is in cm.

 

• The KE of the slice is therefore .5 m v^2 = .5 ( 1.0 r_i* `dr) * (3.4 r_i*)^2, with KE in gram cm^2 / s^2.

 

The Riemann sum of all KE contributions would, as `dr -> 0, approach the an integral which represents the total KE:

 

• total KE = integral of .5 ( 1.0 r) (3.4 r)^2 with respect to r, from r = 0 to r = 10.

 

The simplified form of this expression is approximately 6 r^3; integrating from r = 0 to r = 10 we get approximately 15,000 gram cm^2 / s^2.

 

The process shown here is correct, but the calculations represented here are not numerically accurate to any degree of precision; you should compare with your results with the results obtained here and if necessary rework these calculations using more accurate values.

 

The value of the integral, using .16 * 2 pi r in place of the approximation 1.0 r, is 14 526.72443 g cm^2, to 10 significant figures.  This is a ridiculously precise value, considering that the radius of a pressed disk is consistent to only within perhaps +-.001 cm, with even more significant uncertainty in the mass.  A more reasonable figure would be 14 500 g cm^2 +- 100 g cm^2. **

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 ok

 

 

------------------------------------------------

Self-critique Rating:

 ok

*********************************************

Question:   problem 8.5.17 (4th edition 8.5.16)

 

Give your solution to the problem.

 

For this problem, the given solution does not address this specific problem, but solves a similar problem, the solution to which parallels the given problem. 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

 A = `pi ( .5 y ) ^ 2 = `pi / 4 * y^2

 A * `dy = `pi/4 * y^2 * `dy 

980 * mass = 245 `pi y^2 `dy 

force * distance = 245 `pi y^2 `dy * ( 15 - y ) = 245  ( 15 - y ) `pi y^2 `dy = 245 `pi ( 15 y^2 - y^3 ) `pi `dy 

integral (245 `pi ( 15 y^2 - y^3 ) `pi dy) y, 0,10)

=245 `pi * (5 y^3 - y^4 / 4)  

= 245 `pi * 2500 ergs = 1924225.5 ergs

 

 

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

 

The given solution solves the following problem:

A conical glass is 10 cm high, and at the top its width is 10 cm. 

 

How much work is required to empty the glass by raising the liquid through a straw to a height of 15 cm from the base?

Solution:

 

** The diameter of the top of the cone is equal to the vertical distance y from the apex to the top.

 

 

At height y the diameter of the cone is easily seen to be equal to y, so the cross-section at height y has radius .5 y and therefore area A = `pi ( .5 y ) ^ 2 = `pi / 4 * y^2.

 

 

A slice of thickness `dy at height y has approximate volume A * `dy = `pi/4 * y^2 * `dy.

 

 

This area is in cm^3 so its mass is equal to the volume and the weight in dynes is 980 * mass = 245 `pi y^2 `dy.

 

 

This weight is raised from height y to height 15, a distance of 15 - y.  So the work to raise the slice is force * distance = 245 `pi y^2 `dy * ( 15 - y ) = 245  ( 15 - y ) `pi y^2 `dy = 245 `pi ( 15 y^2 - y^3 ) `pi `dy

 

 

Slices go from y = 0 to y = 10 cm so the integral is  245 `pi ( 15 y^2 - y^3 ) `pi dy, evaluated from y = 0 to y = 10.

 

 

We get 245 `pi * (5 y^3 - y^4 / 4) evaluated between 0 and 10.

 

 

The result is 245 `pi * 2500 ergs, close to 2 million ergs.

 

 

Most calculations were mentally so check the precise numbers.  The process is correct. **

 

.

STUDENT COMMENT:

I am stuck at a point close to the end on this problem. The integral I have is from 0 to 10 'rho g A (15-y) dy

INSTRUCTOR RESPONSE:

 

** Good, but A is a function of y because the glass is tapering. A = `pi r^2. What is the radius r at height y? Just draw a picture--two straight lines for the outline of the glass--and use proportionalities. Draw some similar triangles if necessary. **

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 OK

 

 

------------------------------------------------

Self-critique Rating:

OK"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

OK"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Good responses. Let me know if you have questions. &#