course MTH 174 ƫ𡦠sWկassignment #002
......!!!!!!!!...................................
01:39:13 Query Section 6.3 #8, ds / dt = -32 t + 100, s = 50 when t = 0
......!!!!!!!!...................................
RESPONSE --> f(t) = -16t + 100t + C F(t) = 50 when t = 0 50 = -16(0) + 100(0) + C C = 50 f(t) = -16t + 100t + C
.................................................
......!!!!!!!!...................................
01:39:41 What is the solution satisfying the given initial condition?
......!!!!!!!!...................................
RESPONSE --> C = 50
.................................................
......!!!!!!!!...................................
01:40:31 What is the general solution to the differential equation?
......!!!!!!!!...................................
RESPONSE --> f(t) = -16t + 100t + 50
.................................................
......!!!!!!!!...................................
02:15:25 Query Section 6.3 #14 water balloon from 30 ft, v(t) = -32t+40
......!!!!!!!!...................................
RESPONSE --> (a) h(t) = -16t^2 + 40t + 30 (b) v(t) = -32t + 40 v(1.5) = -8 v(3) = -56 Average Velocity = (8 + 56) / 2 = 32 ft/sec. (c) 6 = -16t^2 + 40t + 30 0 = -16t^2 + 40t + 24 t = 3 v(3) = 56 ft/sec. when it strikes the person on the top of the head.
.................................................
......!!!!!!!!...................................
02:19:39 How fast is the water balloon moving when it strikes the ground?
......!!!!!!!!...................................
RESPONSE --> 59.33 ft/sec ** the antiderivative function is s(t) = -16 t^2 + 40 t + c. Since the building is 30 ft high you know that s(0) = 30. Following the same method used in the preceding problem we get s(t) = - 16 t^2 + 40 t + 30. The water balloon strikes the ground when s(t) = 0. This occurs when -16 t^2 + 40 t + 30 = 0. Dividing by 2 we have -8 t^2 + 20 t + 15 = 0. The quadratic formula gives us t = [ -20 +- `sqrt( 400 + 480) ] / ( 2 * -8) or t = 1.25 +- sqrt(880) / 16 or t = 1.25 +- 29.7 / 16, approx. or t = 1.25 +- 1.87 or t = 3.12 or -.62. The solution t = 3.12 gives us v(t) = v(3.12) = -32 * 3.12 + 40 = -60, approx. If the accurate solution is used we find that the ball strikes the ground at precisely 60 ft / sec. So when it strikes the ground the balloon is moving downward at 60 feet / second.**
.................................................
......!!!!!!!!...................................
02:19:58 How fast is the water balloon moving when it strikes the 6 ft person's head?
......!!!!!!!!...................................
RESPONSE --> 56 ft/sec
.................................................
......!!!!!!!!...................................
02:20:23 What is the average velocity of the balloon between the two given clock times?
......!!!!!!!!...................................
RESPONSE --> 32 ft/sec
.................................................
......!!!!!!!!...................................
02:20:41 What function describes the velocity of the balloon as a function of time?
......!!!!!!!!...................................
RESPONSE --> v(t) = -32 +40
.................................................
......!!!!!!!!...................................
11:56:36 Query Section 6.4 #19 (#18 3d edition) derivative of (int(ln(t)), t, x, 1)
......!!!!!!!!...................................
RESPONSE --> (a) 6 seconds (b) left and right sums? I know what would be and over estimate and what would be an underestimate. This should give the exact amount: 27.5+22.5+17.5+12.5+7.5+2.5 = 90 ft. traveled (c) Half the base times the height of the graph equals the area underneath. 3 sec * 30 ft / sec = 90 ft. (d) v(x) = -5x + 30 intergral from 0 to 6 sec. of -5x + 30 = F(b) - F(a) = -5/2(6)^2 - -5/2(0)^2 = -90, a distance of 90 ft.
.................................................
......!!!!!!!!...................................
11:57:33 What is the desired derivative?
......!!!!!!!!...................................
RESPONSE --> V(x) = -5/2 x^2
.................................................
......!!!!!!!!...................................
12:19:15 The Second Fundamental Theorem applies to an integral whose upper limit is the variable with respect to which we take the derivative. How did you deal with the fact that the variable is the lower limit?
......!!!!!!!!...................................
RESPONSE --> I knew from the table exactly when the car came to rest.
.................................................
......!!!!!!!!...................................
12:23:45 Why do we use something besides x for the integrand?
......!!!!!!!!...................................
RESPONSE --> x was replaced by t for time. The integrand was v for velocity.
.................................................
......!!!!!!!!...................................
22:22:23 Query Section 6.4 #26 (3d edition #25) derivative of (int(e^-(t^2),t, 0,x^3)
......!!!!!!!!...................................
RESPONSE --> -(e^(cos^(2)(x))sin(x)
.................................................
......!!!!!!!!...................................
22:23:07 What is the desired derivative?
......!!!!!!!!...................................
RESPONSE --> -(e^(cos^(2)(x))sin(x)
.................................................
......!!!!!!!!...................................
22:24:24 10-16-2007 22:24:24 How did you apply the Chain Rule to this problem?
......!!!!!!!!...................................
NOTES -------> The derivative of the whole thing times the derivative of what's inside.
.......................................................!!!!!!!!...................................
22:25:56 Why was the Chain Rule necessary?
......!!!!!!!!...................................
RESPONSE --> It would have been very extensive work otherwise.
.................................................