course MTH 174 FPӡ|֟assignment #004
......!!!!!!!!...................................
14:32:17 query problem 7.2.12 (3d edition #11) antiderivative of sin^2 x
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
16:22:37 what is the requested antiderivative?
......!!!!!!!!...................................
RESPONSE --> (x / 2) - (sin(x)*cos(x)) / 2
.................................................
......!!!!!!!!...................................
16:26:06 What substitution, breakdown into parts and/or other tricks did you use to obtain the antiderivative?
......!!!!!!!!...................................
RESPONSE --> I used the formula: antiderivative of sin^n(x) dx = (-1 / n) * sin^(n-1)(x) * cos(x) + ((n -1) / n) * antiderivative of sin^(n-2)(x) dx, n positive
.................................................
......!!!!!!!!...................................
19:30:32 query problem 7.2.16 antiderivative of (t+2) `sqrt(2+3t)
......!!!!!!!!...................................
RESPONSE --> antiderivative of (t+2) `sqrt(2+3t) u = (t+2) v' = `sqrt(2+3t) antiderivative of uv' dt = uv - antiderivative of u'v dt
.................................................
......!!!!!!!!...................................
19:32:04 what is the requested antiderivative?
......!!!!!!!!...................................
RESPONSE --> 2(3x+2)^(3/2) * (9x+26) / 135
.................................................
......!!!!!!!!...................................
19:50:43 What substitution, breakdown into parts and/or other tricks did you use to obtain the antiderivative?
......!!!!!!!!...................................
RESPONSE --> antiderivative of (t+2) `sqrt(2+3t) u = (t+2) v' = `sqrt(2+3t) antiderivative of uv' dt = uv - antiderivative of u'v dt antiderivative of (t+2) `sqrt(2+3t) = (t+2)2(2+3t)^(3/2) / 9 - antiderivative of 2(2+3t)^(3/2) / 9 antiderivative of 2(2+3t)^(3/2) / 9 = (2/9) antiderivative of (2+3t)^(3/2) antiderivative of (2+3t)^(3/2) = 2(2+3t)^(5/2) / 15 (t+2)2(2+3t)^(3/2) / 9 - (2/9) (2(2+3t)^(5/2) / 15) + C = (t+2)2(2+3t)^(3/2) / 9 - (4(2+3t)^(5/2) / 135) + C = 2(3t+2)^3/2 * (9t+26) / 135
.................................................
......!!!!!!!!...................................
23:13:56 query problem 7.2.27 antiderivative of x^5 cos(x^3)
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
23:16:37 what is the requested antiderivative?
......!!!!!!!!...................................
RESPONSE --> (sin(x^3)x^3 + cos(x^3)) / 3 I don't understand how to do this one. Please explain a viable method.
.................................................
......!!!!!!!!...................................
23:16:40 What substitution, breakdown into parts and/or other tricks did you use to obtain the antiderivative?
......!!!!!!!!...................................
RESPONSE -->
.................................................
Oy҅IJҙs몷 assignment #004 Ճ߉mְWb Physics II 11-09-2007
......!!!!!!!!...................................
20:40:15 query problem 7.2.52 (3d edition #50) f(0)=6, f(1) = 5, f'(1) = 2; find int( x f'', x, 0, 1).
......!!!!!!!!...................................
RESPONSE --> f(0) = 6, f(1) = 5 f'(1) = 2 Integral from 0 to 1 of x * f''(x) dx u = x, v' = f''(x) u' = 1, v = f'(x) x * f'(x) - integral from 0 to 1 of f'(x) dx = x * f'(x) - f(x), evaluated from 0 to 1 = (f'(1) - f(1)) - (0 - f(0)) = (2 - 5) - (0 - 6) = 3
.................................................
......!!!!!!!!...................................
20:40:21 What is the value of the requested integral?
......!!!!!!!!...................................
RESPONSE --> 3
.................................................
......!!!!!!!!...................................
21:02:36 How did you use integration by parts to obtain this result? Be specific.
......!!!!!!!!...................................
RESPONSE --> f(0) = 6, f(1) = 5 f'(1) = 2 Integral from 0 to 1 of x * f''(x) dx u = x, v' = f''(x) u' = 1, v = f'(x) x * f'(x) - integral from 0 to 1 of f'(x) dx = x * f'(x) - f(x), evaluated from 0 to 1 = (f'(1) - f(1)) - (0 - f(0)) = (2 - 5) - (0 - 6) = 3
.................................................
......!!!!!!!!...................................
21:02:40 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
21:02:45 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE -->
.................................................