course MTH 174 ?Pio??????}?assignment #005
......!!!!!!!!...................................
22:40:59 Query problem 7.3.17 (3d edition #15) x^4 e^(3x)
......!!!!!!!!...................................
RESPONSE --> integral of x^4 e^(3x) = (1/3 * x^4 * e^(3x)) - (1/9 * 4x^3 * e^(3x)) + (1/27 * 12x^2 * e^(3x)) - (1/81 * 24x * e^3x)) + (1/243 * 24 * e^3x) = e^(3x) * [ (1/3 * x^4) - (4/9 * x^3) + (4/9 * x^2) - (8/27 * x) + (8/81) ] Applied formula III-14 from the back of the book.
.................................................
......!!!!!!!!...................................
22:41:14 what it is your antiderivative?
......!!!!!!!!...................................
RESPONSE --> e^(3x) * [ (1/3 * x^4) - (4/9 * x^3) + (4/9 * x^2) - (8/27 * x) + (8/81) ]
.................................................
......!!!!!!!!...................................
22:41:32 Which formula from the table did you use?
......!!!!!!!!...................................
RESPONSE --> Formula III-14
.................................................
......!!!!!!!!...................................
22:44:05 You should have used formula 14. What was your value of a, what was p(x), how many derivatives did you use and what were your derivatives of p(x)?
......!!!!!!!!...................................
RESPONSE --> a = 3 p(x) = x^4 p'(x) = 4x^3 p''(x) = 12x^2 p'''(x) = 24x p''''(x) = 24 Four derivatives gave a total of 5 terms, including the original p(x).
.................................................
......!!!!!!!!...................................
23:53:21 Query problem 7.3.33 (3d edition #30) 1 / [ 1 + (z+2)^2 ) ]
......!!!!!!!!...................................
RESPONSE --> integral of 1 / [ 1 + (z+2)^2 ) ] taken with respect to z. w = (z + 2) integral of 1 / (1^2 + w^2) dw = (1 / `sqrt(1)) * arctan (w / `sqrt(1)) + C = (1 / `sqrt(1)) * arctan ((z + 2 ) / `sqrt(1)) + C = arctan (z+ 2) + C
.................................................
......!!!!!!!!...................................
23:53:53 What is your integral?
......!!!!!!!!...................................
RESPONSE --> integral of 1 / [ 1 + (z+2)^2 ) ] taken with respect to z.
.................................................
......!!!!!!!!...................................
23:56:02 Which formula from the table did you use and how did you get the integrand into the form of this formula?
......!!!!!!!!...................................
RESPONSE --> I used substitution so that the equation would fit formula V-24.
.................................................
18:40:40 7.4.6 (#8 in 3d edition). Integrate 2y / ( y^3 - y^2 + y - 1)
......!!!!!!!!...................................
RESPONSE --> A partial fractions decomposition for 2y / ( y^3 - y^2 + y - 1) is 2y = (Ay + b) / (y^2 + 1) + C / (y - 1) A = -1, B = 1, C = 1 (-y + 1) / (y^2 + 1) + 1 / (y -1) leaves us the integral of (-y) / (y^2 + 1) + 1 / (y^2 + 1) + 1 / (y - 1) = -ln (y^2 + 1) / 2 + arctan y + ln |y - 1| + C
.................................................
......!!!!!!!!...................................
18:45:18 After the integrand was in the form 2y / [ (y-1) * (y^2 + 1) ], what form of partial fraction did you use?
......!!!!!!!!...................................
RESPONSE --> (Ax + B) / (y^2 + 1) + C / (y-1)
.................................................
......!!!!!!!!...................................
11:56:47 7.4.29 (3d edition #24). Integrate (z-1)/`sqrt(2z-z^2)
......!!!!!!!!...................................
RESPONSE --> Indefinite Integral of (z-1)/`sqrt(2z-z^2) * dz let u = 2z - z^2 du = 2 - 2z * dz -1 / 2 du = z - 1 * dz Indefinite Integral of -1 / (2 * `sqrt(u)) * du = -1 / 2 * indefinite integral of 1 / `sqrt(u) * du = -1 / 2 * indefinite integral of u^(-1/2) du = (-1 / 2) * 2(u)^(1 / 2) = - `sqrt (u) + C = - `sqrt (2z - z^2) + C
.................................................
......!!!!!!!!...................................
11:57:05 What did you get for your integral?
......!!!!!!!!...................................
RESPONSE --> - `sqrt (2z - z^2) + C
.................................................
......!!!!!!!!...................................
11:57:31 What substitution did you use?
......!!!!!!!!...................................
RESPONSE --> let u = 2z - z^2 du = 2 - 2z * dz -1 / 2 du = z - 1 * dz
.................................................
......!!!!!!!!...................................
13:05:44 7.4.40 (3d edition #28). integrate (y+2) / (2y^2 + 3y + 1)
......!!!!!!!!...................................
RESPONSE --> (y+2) / (2y^2 + 3y + 1) = y / (2y^2 + 3y + 1) + 2 / (2y^2 + 3y + 1) y / (2y^2 + 3y + 1) = -1 / (2y + 1) + 1 / (y + 1) 2 / (2y^2 + 3y + 1) = 4 / (2y + 1) + -2 / (y + 1) ind. int. of -1 / (2y + 1) + ind. int. of 1 / (y + 1) + ind. int. of 4 / (2y + 1) + ind. int. of. -2 / (y + 1) = (3 / 2)(ln |2y + 1|) - ln |y + 1| + C
.................................................
......!!!!!!!!...................................
13:07:15 What is your integral and how did you obtain it?
......!!!!!!!!...................................
RESPONSE --> (3 / 2)(ln |2y + 1|) - ln |y + 1| + C obtained by partial fractions decomposition, (y+2) / (2y^2 + 3y + 1) = y / (2y^2 + 3y + 1) + 2 / (2y^2 + 3y + 1) y / (2y^2 + 3y + 1) = -1 / (2y + 1) + 1 / (y + 1) 2 / (2y^2 + 3y + 1) = 4 / (2y + 1) + -2 / (y + 1) ind. int. of -1 / (2y + 1) + ind. int. of 1 / (y + 1) + ind. int. of 4 / (2y + 1) + ind. int. of. -2 / (y + 1) = (3 / 2)(ln |2y + 1|) - ln |y + 1| + C
.................................................
......!!!!!!!!...................................
13:08:15 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE --> I've developed a method of approach for solving those integrals.
.................................................