Assignment 6

course MTH 174

n?????????????assignment #006

Your work has been received. Please scroll through the document to see any inserted notes (inserted at the appropriate place in the document, in boldface) and a note at the end. The note at the end of the file will confirm that the file has been reviewed; be sure to read that note. If there is no note at the end, notify the instructor through the Submit Work form, and include the date of the posting to your access page.

?????????????b?

Physics II

11-25-2007

......!!!!!!!!...................................

20:05:18

Query problem 7.5.13 (3d edition #10) graph concave DOWN and decreasing (note changes indicated by CAPS)

......!!!!!!!!...................................

RESPONSE -->

RIGHT(n), TRAP(n), Exact value, MID(n), LEFT(n).

.................................................

......!!!!!!!!...................................

20:07:34

list the approximations and their rules in order, from least to greatest

......!!!!!!!!...................................

RESPONSE -->

RIGHT(n), TRAP(n), Exact value, MID(n), LEFT(n).

.................................................

......!!!!!!!!...................................

20:07:54

between which approximations does the actual integral lie?

......!!!!!!!!...................................

RESPONSE -->

Between TRAP(n) and MID(n)

.................................................

......!!!!!!!!...................................

20:10:03

Explain your reasoning

......!!!!!!!!...................................

RESPONSE -->

Since the graph is concave down and decreasing,

LEFT will over-estimate the most

RIGHT will under-estimate the most

TRAP will under-estimate the actual, but will be closer than RIGHT

MID will over-estimate the actual, but will be closer than LEFT

.................................................

......!!!!!!!!...................................

20:12:10

if you have not done so explain why when a function is concave down the trapezoidal rule UNDERestimates the integral

......!!!!!!!!...................................

RESPONSE -->

MID:

A line(within a domain) tangent to a curve that is concave down will extend the trapezoid to some area above the curve.

TRAP:

A line connecting two points on a curve (secant) that is concave down, defining the top of the trapezoid, will lie in an area below the curve.

.................................................

......!!!!!!!!...................................

20:12:22

if you have not done so explain why when a function is concave down the midpoint rule OVERrestimates the integral

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

20:12:30

Query NOTE: this problem has been left out of the new edition of the text, which is a real shame; you can skip on to the next problem (was problem 7.5.18) graph positive, decreasing, concave upward over interval 0 < x < h

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

20:12:32

why is the area of the trapezoid h (L1 + L2) / 2?

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

20:12:33

Describe how you sketched the area E = h * f(0)

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

20:12:35

Describe how you sketched the area F = h * f(h)

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

20:12:37

Describe how you sketched the area R = h*f(h/2)

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

20:12:40

Describe how you sketched the area C = h * [ f(0) + f(h) ] / 2

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

20:12:43

Describe how you sketched the area N = h/2 * [ f(0) + f(h/2) ] / 2 + h/2 * [ f(h/2) } f(h) ] / 2

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

20:12:46

why is C = ( E + F ) / 2?

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

20:12:47

Why is N = ( R + C ) / 2?

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

20:12:49

Is E or F the better approximation to the area?

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

20:12:51

Is R or C the better approximation to the area?

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:01:09

query problem 7.5.24 show trap(n) = left(n) + 1/2 ( f(b) - f(a) ) `dx

......!!!!!!!!...................................

RESPONSE -->

The trapezoid rule is:

TRAP(n) = (LEFT(n) + RIGHT(n)) / 2

Since,

| LEFT(n) - RIGHT(n) | = ( f(b) - f(a) ) `dx

Then,

1/2 | LEFT(n) - RIGHT(n) | = 1/2 ( f(b) - f(a) ) `dx

It follows that,

TRAP(n) = LEFT(n) + 1/2 ( f(b) - f(a) ) `dx

.................................................

......!!!!!!!!...................................

21:05:55

Explain why the equation must hold.

......!!!!!!!!...................................

RESPONSE -->

If f is increasing over the interval [a,b],

1/2 ( f(b) - f(a) ) `dx = the area of a triangle that when added to LEFT(n) = the trapezoid under that region.

The trapezoid rule is:

TRAP(n) = (LEFT(n) + RIGHT(n)) / 2

Since,

| LEFT(n) - RIGHT(n) | = ( f(b) - f(a) ) `dx

Then,

1/2 | LEFT(n) - RIGHT(n) | = 1/2 ( f(b) - f(a) ) `dx

It follows that,

TRAP(n) = LEFT(n) + 1/2 ( f(b) - f(a) ) `dx

.................................................

......!!!!!!!!...................................

21:10:05

In terms of a graph describe how trap(n) differs from left(n) and what this difference has to do with f(b) - f(a).

......!!!!!!!!...................................

RESPONSE -->

If f is increasing over the interval [a,b],

1/2 ( f(b) - f(a) ) `dx = the area of a triangle that when added to LEFT(n) equals the trapezoid under that region.

( f(b) - f(a) ) `dx = the area of a rectangle that equals the difference between LEFT(n) and RIGHT(n). The difference between the trapezoid and LEFT(n) = half of the rectangle.

.................................................

Once more, excellent work.