course MTH 174 n?????????????assignment #006
......!!!!!!!!...................................
20:05:18 Query problem 7.5.13 (3d edition #10) graph concave DOWN and decreasing (note changes indicated by CAPS)
......!!!!!!!!...................................
RESPONSE --> RIGHT(n), TRAP(n), Exact value, MID(n), LEFT(n).
.................................................
......!!!!!!!!...................................
20:07:34 list the approximations and their rules in order, from least to greatest
......!!!!!!!!...................................
RESPONSE --> RIGHT(n), TRAP(n), Exact value, MID(n), LEFT(n).
.................................................
......!!!!!!!!...................................
20:07:54 between which approximations does the actual integral lie?
......!!!!!!!!...................................
RESPONSE --> Between TRAP(n) and MID(n)
.................................................
......!!!!!!!!...................................
20:10:03 Explain your reasoning
......!!!!!!!!...................................
RESPONSE --> Since the graph is concave down and decreasing, LEFT will over-estimate the most RIGHT will under-estimate the most TRAP will under-estimate the actual, but will be closer than RIGHT MID will over-estimate the actual, but will be closer than LEFT
.................................................
......!!!!!!!!...................................
20:12:10 if you have not done so explain why when a function is concave down the trapezoidal rule UNDERestimates the integral
......!!!!!!!!...................................
RESPONSE --> MID: A line(within a domain) tangent to a curve that is concave down will extend the trapezoid to some area above the curve. TRAP: A line connecting two points on a curve (secant) that is concave down, defining the top of the trapezoid, will lie in an area below the curve.
.................................................
......!!!!!!!!...................................
20:12:22 if you have not done so explain why when a function is concave down the midpoint rule OVERrestimates the integral
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:12:30 Query NOTE: this problem has been left out of the new edition of the text, which is a real shame; you can skip on to the next problem (was problem 7.5.18) graph positive, decreasing, concave upward over interval 0 < x < h
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:12:32 why is the area of the trapezoid h (L1 + L2) / 2?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:12:33 Describe how you sketched the area E = h * f(0)
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:12:35 Describe how you sketched the area F = h * f(h)
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:12:37 Describe how you sketched the area R = h*f(h/2)
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:12:40 Describe how you sketched the area C = h * [ f(0) + f(h) ] / 2
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:12:43 Describe how you sketched the area N = h/2 * [ f(0) + f(h/2) ] / 2 + h/2 * [ f(h/2) } f(h) ] / 2
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:12:46 why is C = ( E + F ) / 2?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:12:47 Why is N = ( R + C ) / 2?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:12:49 Is E or F the better approximation to the area?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:12:51 Is R or C the better approximation to the area?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
21:01:09 query problem 7.5.24 show trap(n) = left(n) + 1/2 ( f(b) - f(a) ) `dx
......!!!!!!!!...................................
RESPONSE --> The trapezoid rule is: TRAP(n) = (LEFT(n) + RIGHT(n)) / 2 Since, | LEFT(n) - RIGHT(n) | = ( f(b) - f(a) ) `dx Then, 1/2 | LEFT(n) - RIGHT(n) | = 1/2 ( f(b) - f(a) ) `dx It follows that, TRAP(n) = LEFT(n) + 1/2 ( f(b) - f(a) ) `dx
.................................................
......!!!!!!!!...................................
21:05:55 Explain why the equation must hold.
......!!!!!!!!...................................
RESPONSE --> If f is increasing over the interval [a,b], 1/2 ( f(b) - f(a) ) `dx = the area of a triangle that when added to LEFT(n) = the trapezoid under that region. The trapezoid rule is: TRAP(n) = (LEFT(n) + RIGHT(n)) / 2 Since, | LEFT(n) - RIGHT(n) | = ( f(b) - f(a) ) `dx Then, 1/2 | LEFT(n) - RIGHT(n) | = 1/2 ( f(b) - f(a) ) `dx It follows that, TRAP(n) = LEFT(n) + 1/2 ( f(b) - f(a) ) `dx
.................................................
......!!!!!!!!...................................
21:10:05 In terms of a graph describe how trap(n) differs from left(n) and what this difference has to do with f(b) - f(a).
......!!!!!!!!...................................
RESPONSE --> If f is increasing over the interval [a,b], 1/2 ( f(b) - f(a) ) `dx = the area of a triangle that when added to LEFT(n) equals the trapezoid under that region. ( f(b) - f(a) ) `dx = the area of a rectangle that equals the difference between LEFT(n) and RIGHT(n). The difference between the trapezoid and LEFT(n) = half of the rectangle.
.................................................