#$&* course Mth 158 9/16 5:15 pm If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.
.............................................
Given Solution: * * ** The Pythagorean Theorem tells us that c^2 = a^2 + b^2, where a and b are the legs and c the hypotenuse. Substituting 14 and 48 for a and b we get c^2 = 14^2 + 48^2, so that c^2 = 196 + 2304 or c^2 = 2500. This tells us that c = + sqrt(2500) or -sqrt(2500). Since the length of a side can't be negative we conclude that c = +sqrt(2500) = 50. ** ********************************************* Question: * R.3.22 \ 18 (was R.3.12). Is a triangle with legs of 10, 24 and 26 a right triangle, and how did you arrive at your answer? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To see if this is a right triangle I applied the converse of the Pythagorean Theorem. I first squared the length of the longest side then I squared the smaller sides added those to see if the sum of those were equal to the longest side. 26^2 = 676 10^2 + 24^2 = 100 + 576 = 676 My conlusion is that yes this is a right triangle, because the lengths of the two smaller sides add up to the longer side. The hypotenuse is 26. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** Using the Pythagorean Theorem we have c^2 = a^2 + b^2, if and only if the triangle is a right triangle. Substituting we get 26^2 = 10^2 + 24^2, or 676 = 100 + 576 so that 676 = 676 This confirms that the Pythagorean Theorem applies and we have a right triangle. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: * R.3.34 \ 30 (was R.3.24). What are the volume and surface area of a sphere with radius 3 meters, and how did you obtain your result? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To solve this one I had to apply two different formulas to get my answer. First I had to solve for the Volume. V = 4/3 * pi * r^3 V = 4/3 * pi * 3^3 V = 4/3 * pi * 27 V = 108/3 * pi Had to multiply the 27 by 4 to get my answer. V = 36pi cubic feet S = 4 * pi * r^2 S = 4 * pi * 3^2 S = 4 * pi * 9 Had to multiply the 4 by 9 to get my answer. S = 36pi square feet confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** To find the volume and surface are a sphere we use the given formulas: Volume = 4/3 * pi * r^3 V = 4/3 * pi * (3 m)^3 V = 4/3 * pi * 27 m^3 V = 36pi m^3 Surface Area = 4 * pi * r^2 S = 4 * pi * (3 m)^2 S = 4 * pi * 9 m^2 S = 36pi m^2. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: * R.3.50 \ 42 (was R.3.36). A pool of diameter 20 ft is enclosed by a deck of width 3 feet. What is the area of the deck and how did you obtain this result? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: This one was a little tricky and did have to view some examples. I used the formula for finding area to get my result. A = pi * r^2 A = pi * 23^2 A = pi * 529 sq ft. The area of the deck Then to find the amount of fence to enclose the deck, I took the area of the deck and subtracted the area of the pool from it. Which was 529 - 400 = 129 pi sq ft. confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Think of a circle of radius 10 ft and a circle of radius 13 ft, both with the same center. If you 'cut out' the 10 ft circle you are left with a 'ring' which is 3 ft wide. It is this 'ring' that's covered by the deck. The 10 ft. circle in the middle is the pool. The deck plus the pool gives you a circle of radius 10 ft + 3 ft = 13 ft. The area of the deck plus the pool is therefore area = pi r^2 = pi * (13 ft)^2 = 169 pi ft^2. So the area of the deck must be deck area = area of deck and pool - area of pool = 169 pi ft^2 - 100pift^2 = 69 pi ft^2. ** ???? It appears that we got different answers on this one. I think that word problems confuse me. I think that we may have used different numbers also. Am I incorrect? I appreciate all help with this. Thanks. "
.............................................
Given Solution: Think of a circle of radius 10 ft and a circle of radius 13 ft, both with the same center. If you 'cut out' the 10 ft circle you are left with a 'ring' which is 3 ft wide. It is this 'ring' that's covered by the deck. The 10 ft. circle in the middle is the pool. The deck plus the pool gives you a circle of radius 10 ft + 3 ft = 13 ft. The area of the deck plus the pool is therefore area = pi r^2 = pi * (13 ft)^2 = 169 pi ft^2. So the area of the deck must be deck area = area of deck and pool - area of pool = 169 pi ft^2 - 100pift^2 = 69 pi ft^2. ** ???? It appears that we got different answers on this one. I think that word problems confuse me. I think that we may have used different numbers also. Am I incorrect? I appreciate all help with this. Thanks. "
.............................................
Given Solution: Think of a circle of radius 10 ft and a circle of radius 13 ft, both with the same center. If you 'cut out' the 10 ft circle you are left with a 'ring' which is 3 ft wide. It is this 'ring' that's covered by the deck. The 10 ft. circle in the middle is the pool. The deck plus the pool gives you a circle of radius 10 ft + 3 ft = 13 ft. The area of the deck plus the pool is therefore area = pi r^2 = pi * (13 ft)^2 = 169 pi ft^2. So the area of the deck must be deck area = area of deck and pool - area of pool = 169 pi ft^2 - 100pift^2 = 69 pi ft^2. ** ???? It appears that we got different answers on this one. I think that word problems confuse me. I think that we may have used different numbers also. Am I incorrect? I appreciate all help with this. Thanks. "