Query_03

#$&*

course Mth 279

resent 3/4/13

Section 2.4.*********************************************

Question: 1. How long will it take an investment of $1000 to reach $3000 if it is compounded annually at 4%?

****

Using the equation form f = p * (1 + i )^n

We can get

3000 = 1000 (1 + 0.04)^n

3 = 1.04^n

ln(1.04) * n = ln(3)

n = ln(3) / ln(1.04) = approximatly 28 years

#$&*

How long will it take if compounded quarterly at the same annual rate?

****

3000 = 1000 (1 + (0.04/4))^(4n)

3000 = 1000 (1.01)^(4n)

3 = 1.01^(4n)

4n ln(1.01) = ln(3)

n = ln(3) / (4 ln(1.01)) = 27.6 years approx.

#$&*

How long will it take if compounded continuously at the same annual rate?

****

using formula A(t) = A_0 * e^(rt)

3000 = 1000 e^(o.o4t)

3 = e^(0.04t)

ln(3) = 0.04t

t = ln(3) / 0.04 = 27.47 years approx.

#$&*

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Answered above after each question in the spaces provided.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: 2. What annual rate of return is required if an investment of $1000 is to reach $3000 in 15 years?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Using f = P(1 + i)^n

3000 = 1000 (1 + i )^15

and solving for i,

3 = (1+i)^15

15th root of 3 = 1 + i

1.076 = 1 + i

0.076 = i

or i = 7.6%

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: 3. A bacteria colony has a constant growth rate. The population grows from 40 000 to 100 000 in 72 hours.

How much longer will it take the population to grow to 200 000?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Using the formula for exponential growth, x(t) = x e^(kt)

solving for k,

100,000 = 40,000 e^(k * 72)

2.5 = e^(k * 72)

ln(2.5) = k * 72

k = ln(2.5) / 72 = 0.013 approx.

solving for t,

200,000 = 100,000 e^(0.013t)

2 = e^(0.013t)

ln(2) = 0.013t

t = ln(2) / 0.013 = approximatly 54.5 more hours

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: 4. A population experiences growth rate k and migration rate M, meaning that when the population is P the rate at which new members are added is k P,

but the rate at they enter or leave the population is M (positive M implies migration into the population, negative M implies migration out of the population).

This results in the differential equation dP/dt = k P + M.

Given initial condition P = P_0, solve this equation for the population function P(t).

****

dP/dt = k P + M has the general solution of P(t) = c e^(kt) - (M/k)

#$&*

In terms of k and M, determine the minimum population required to achieve long-term growth.

****

the increase of the population e^(kt) must be greater than (M/k)

at t = 0, P(t) = c - (M/k) which means that the minimum population must be greater than (M/k)

#$&*

What migration rate is required to achieve a constant population?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The migration rate M, must equal the rate of population increase k P.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: 5. Suppose that the migration in the preceding occurs all at once, annually, in such a way that at the end of the year,

the population returns to the same level as that of the previous year.

How many individuals migrate away each year?

****

The number of individuls that migrate away each year equals the number that migreates in each year.

which would keep the population the same as the previous year.

#$&*

How does this compare to the migration rate required to achieve a steady population, as determined in the preceding question?

****

The migration rate M, must equal the rate of population increase k P.

They are the same, bc to keep a steady or constant population, these rates must be equal.

#$&*

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

1

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: 6. A radioactive element decays with a half-life of 120 days.

Another substance decays with a very long half-life producing the first element at what we can regard as a constant rate.

We begin with 3 grams of the element, and wish to increase the amount present to 4 grams over a period of 360 days.

At what constant rate must the decay of the second substance add the first?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

first the half life of the first substance is 120,

120 = ln(2) / k

and solving for k,

k = 0.006

using a form of the equation, Q(t) = C e^(-kt)

4 = 3e^(-0.006 * 120) + M

4 - M = 3e^(-0.006 * 120)

M = 4 - 3e^(-0.006 * 120) = 2.54

@&

Material is added continuously, not in discrete amounts at 120 day intervals.

*@

@&

The rate at which the material is lost is

dQ/dt = -.018 e^(-.006 t)

At the initial instant t = 0, this rate is -.018, meaning that material is being lost at the rate of .018 grams / day.

If we add material continuously at this constant rate, then none will be lost.

Thus r = .018, meaning that we must continuously add .018 grams of new material per day.

It's worth noting that if rather than adding material continuously we just add a chunk consisting of .018 grams of the material at the end of each day, the amount of material will increase over time, with the beginning-of-day amount increasing toward a limiting value which is in excess of the original 3 grams. It would be interesting to calculate this limiting value.

*@

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Your work looks good. See my notes. Let me know if you have any questions. &#