.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the general solution of the equation y '' + y ' = 6 t^2 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y(t) = y_c(t) + y_p(t) Starting with the solution of the homgeneous: y_c(t) P(a) = a^2 + a = 0 which splits into the roots: a(a + 1) a1 = 0 a2 = -1 And from these roots we get to solutions: y1(t) = e^(-t) y2(t) = e^(0) = 1 Resulting in a solution: y_c(t) = Ae^(-t) + B ------------------------------------------------------------ Next we need the other part: y_p(t) since g(t) = 6t^2 we can choose the particular solution form: y_p(t) = t^r (At^2 + Bt + C ) r = 1 since one would use the same form as the y_c(t) solution. y_p(t) = At^3 + Bt^2 + Ct If we plug this into the original differential equation, we can solve for the unknown constants. y '' + y ' = 6 t^2 (At^3 + Bt^2 + Ct)'' + (At^3 + Bt^2 + Ct)' = 6 t^2 (3At^2 + 2Bt + C)' + 3At^2 + 2Bt + C = 6t^2 6At + 2B + 3At^2 + 2Bt + C = 6t^2 Rearranging this yeilds: 3At^2 + 6At + 2Bt + 2B + C = 6t^2 Now we can get a series of equations to solve the constants: for t^2: 3A = 6 for t: 6A + 2B = 0 for c: 2B + C = 0 Solving the first equation: 3A = 6 A = 2 Plugging in this for the other 2 equations: 6A + 2B = 0 6(2) + 2B = 0 2B = -12 B = -6 2B + C = 0 2(-6) + C = 0 -12 + C = 0 C = 12 Therefore y_p(t) = 2t^3 - 6t^2 + 12t and since y(t) = y_c(t) + y_p(t) y(t) = Ae^(-t) + B + 2t^3 - 6t^2 + 12t confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the general solution of the equation y '' + y ' = cos(t). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y(t) = y_c(t) + y_p(t) Starting with the solution of the homgeneous: y_c(t) P(a) = a^2 + a = 0 which splits into the roots: a(a + 1) a1 = 0 a2 = -1 And from these roots we get to solutions: y1(t) = e^(-t) y2(t) = e^(0) = 1 Resulting in a solution: y_c(t) = Ae^(-t) + B ------------------------------------------------------------------ Next we need the other part: y_p(t) since g(t) = cos(t) we can choose the particular solution form: y_p(t) = Asin(t) + Bcos(t) If we plug this into the original differential equation, we can solve for the unknown constants A, and B. y '' + y ' = cos(t) (Asin(t) + Bcos(t))'' + (Asin(t) + Bcos(t))' = cos(t) (Acos(t) - Bsin(t))' + Acos(t) - Bsin(t) = cos(t) -Asin(t) - Bcos(t) + Acos(t) - Bsin(t) = cos(t) Now we can get a series of equations to solve the constants: for sin(t): -> -A-B = 0 for cos(t): -> A-B = 1 Adding these 2 together yeilds: -2B = 1 B = (-1/2) Plugging in this for the other equation: A-(-1/2) = 1 A + (1/2) = 1 A = (1/2) Therefore y_p(t) = (1/2)sin(t) - (1/2)cos(t) and since y(t) = y_c(t) + y_p(t) y(t) = Ae^(-t) + B + (1/2)sin(t) - (1/2)cos(t) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Give the expected form of the particular solution to the given equation, but do not actually solve for the constants: y '' - 2 y ' + 3 y = 2 e^-t cos(t) + t^2 + t e^(3 t) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y(t) = y_c(t) + y_p(t) Starting with the solution of the homgeneous: y_c(t) P(a) = a^2 + -2 + 3 = 0 Since this does not split into its roots, we must use the Quradtatic Equation. (-b +- sqrt(b^2 - 4ac)) / 2a a = 1 b = -2 c = 3 This yeilds a solution: a_1,2 = 1 +- i*sqrt(2) due to the neagative under the radiacal, we get imaginary solutions. y1(t) = e^(1 + i*sqrt(2)t) y2(t) = e^(1 - i*sqrt(2)t) Using Euler's Formula yeilds: y_c(t) = e^t (Asin(sqrt(2)t) + Bcos(sqrt(2)t)) Next we need the other part: y_p(t) since g(t) = 2 e^-t cos(t) + t^2 + t e^(3 t) this must be done in parts u(t) = 2 e^-t cos(t) v(t) = t^2 w(t) = te^(3 t) y_p(t) = u(t) + v(t) + w(t) choosing the forms to use: u(t) = Ae^(-t)sin(t) + Be^(-t)cos(t) v(t) = Ct^2 + Dt + E w(t) = (Ft + G)e^(3 t) y_p(t) = Ae^(-t)sin(t) + Be^(-t)cos(t) + Ct^2 + Dt + E + (Ft + G)e^(3 t)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Give the expected form of the particular solution to the given equation, but do not actually solve for the constants: y '' + 4 y = 2 sin(t) + cosh(t) + cosh^2(t). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y(t) = y_c(t) + y_p(t) Starting with the solution of the homgeneous: y_c(t) P(a) = a^2 + 4 = 0 Since this does not split into its roots, we must use the Quradtatic Equation. (-b +- sqrt(b^2 - 4ac)) / 2a a = 1 b = 0 c = 4 This yeilds a solution: a_1,2 = +- 2*i due to the neagative under the radiacal, we get imaginary solutions. y1(t) = e^( i*2t) y2(t) = e^(- i*2t) Using Euler's Formula yeilds: y_c(t) = Asin(2t) + Bcos(2t) Next we need the other part: y_p(t) since g(t) = 2 sin(t) + cosh(t) + cosh^2(t) this must be done in parts but first cosh(t) must be converted into e^(t) form. g(t) = 2 sin(t) + cosh(t) + cosh^2(t) g(t) = 2 sin(t) + (e^t/2 + 1/(2e^t)) + (e^t/2 + 1/(2e^t))^2 g(t) = 2 sin(t) + (1/2)e^t + (1/2)e^(-t) + (1/4)e^(2t) + (1/4)e^(-2t) + (1/2) choosing the forms to use: y_p1(t) = Asin(t) + Bcos(t) y_p2(t) = Ce^t y_p3(t) = De^(-t) y_p4(t) = Ee^(2t) y_p5(t) = Fe^(-2t) y_p6(t) = G since y_p(t) = y_p1(t) + y_p2(t) + y_p3(t) + y_p4(t) + y_p5(t) + y_p6(t) y_p(t) = Asin(t) + Bcos(t) + Ce^t + De^(-t) + Ee^(2t) + Fe^(-2t) + G confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: The equation y '' + alpha y ' + beta y = t + sin(t) has complementary solution y_C = c_1 cos(t) + c_2 sin(t) (i.e., this is the solution to the homogeneous equation). Find alpha and beta, and solve the equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Due to the Quadratic Equation (-b +- sqrt(b^2 - 4ac)) / 2a And Euler's Formula: y_c(t) = e^(at)(Asin(wt) + Bcos(wt)) Since our solution is basically: y_c(t) = Asin(t) + Bcos(t) Alpha must be zero, otherwise there would be an e^(at) in our homogeneous solution. b in our quadratic equation is alpha in Euler's formula, so b = 0 and sqrt(-4ac) must then equal sqrt(-4), so that sqrt(4) = 2, and the bottom can be cleared, which is 2(a) = 2 making a = 1, and c = 1 yeilding a solution of +,- i Therefore our equation should be y '' + y = t + sin(t) with Alpha = 0, and Beta = 1 ---------------------------------------------------------- y_p(t) = u(t) + v(t) u(t) = At + B v(t) = t^r(Csin(t) + Dcos(t)) r = 1 because otherwise it would be the same as the homogeneous solution. v(t) = Ctsin(t) + Dtcos(t) y_p(t) = At + B + Ctsin(t) + Dtcos(t) If we plug this into the original differential equation, we can solve for the unknown constants y '' + y = t + sin(t) (At + B + Ctsin(t) + Dtcos(t))'' + (At + B + Ctsin(t) + Dtcos(t)) = t + sin(t) (A + Ctcos(t) + Csin(t) - Dtsin(t) + Dcos(t))' + At + B + Ctsin(t) + Dtcos(t) = t + sin(t) -Ctsin(t) + 2Ccos(t) - Dtcos(t) - 2Dsin(t) + At + B + Ctsin(t) + Dtcos(t) = t + sin(t) Simplifying. 2Ccos(t) - 2Dsin(t) + At + B = t + sin(t) Now we can get a series of equations to solve the constants: for cos(t): -> 2C = 0 for sin(t): -> -2D = 1 for t: -> A = 1 and for c: -> B = 0 Solving all the equations: 2C = 0 C = 0 -2D = 1 D = -1/2 A = 1 B = 0 y_p(t) = t + (-1/2)tcos(t) y(t) = Asin(t) + Bcos(t) + t - (1/2)tcos(t) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Consider the equation y '' - y = e^(`i * 2 t), where `i = sqrt(-1). Using trial solution y_P = A e^(i * 2 t) find the value of A, which is in general a complex number (though in some cases the real or imaginary part of A might be zero) Show that the real and imaginary parts of the resulting function y_P are, respectively, solutions to the real and imaginary parts of the original equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Using: y_P = A e^(i * 2 t) y '' - y = e^(i * 2 t) (A e^(i * 2 t))'' - (A e^(i * 2 t)) = e^(i * 2 t) (2A*i e^(i * 2 t))' - A e^(i * 2 t) = e^(i * 2 t) -4Ae^(i * 2 t) - A e^(i * 2 t) = e^(i * 2 t) For the equation to work: -4A -A = 1 -A5 = 1 A = -1/5 y_p(t) = (-1/5)e^(i * 2 t) ---------------------------------------------------- now solving for the homogneous solution of the equaiton y '' - y = e^(`i * 2 t) y'' - y = 0 P(a) = a^2 - 1 = 0 (a - 1)(a + 1) = 0 a1 = 1 a2 = -1 P_c(t) = Ae^(t) + Be(-t) y(t) = Ae^(t) + Be(-t) - (1/5)e^(i * 2 t) with the homogeneous solution being the real part, and the particular solution is the imaginary part. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&