Query_28

#$&*

course Mth 279

5/21

Query 28 Differential Equations*********************************************

Question: Diagonalize the matrix [2, 3; 2, 3].

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

T^(-1)AT = D

P(lambda) = det[ A - lambda*I] = 0

=[ (2-lambda), 3; 2, (3-lambda)]

= (2-lambda)(3-lambda) - (3)(2)

= lambda^2 - 5*lambda + 6 -6

= lambda^2 -5*lambda

= lambda (lambda - 5)

Lambda_1 = 0

Lambda_2 = 5

-------------------------------------------------------------------

For lambda_1 = 0, we solve (A - lambda_1*I)x_1 = (A)x_1 = 0

[ 2, 3; 2, 3][ x_1; x_2] = [ 0; 0]

Using elementary row operations:

-R1 + R2 -> R2

(1/2)R1 -> R1

[ 1, (3/2); 0, 0][ x_1; x_2] = [ 0; 0]

Which yeilds equation: x_1 + (3/2)(x_2) = 0

x_1 = [ -3; 2] is a solution to this equation.

-------------------------------------------------------------------

For lambda_2 = 5, we solve (A - lambda_2*I)x_2 = (A - 5I)x_2 = 0

[ -3, 3; 2, -2][ x_1; x_2] = [ 0; 0]

Using elementary row operations:

(2/3)R1 + R2 -> R2

(1/3)R1 -> R1

[ -1, 1; 0, 0][ x_1; x_2] = [ 0; 0]

Which yeilds equation: -x_1 + x_2 = 0

x_2 = [ 1; 1] is a solution to this equation.

-----------------------------------------------------------------------

T = [ -3, 1; 2, 1]

det(T) = (-3)(1) - (1)(2)

= -3-2

=-5

T^(-1) = 1/det [ d, -b; -c, a ] = (-1/5) [ 1, -1; -2, -3] = [ (-1/5), (1/5); (2/5), (3/5)]

T^(-1)AT = D

[ (-1/5), (1/5); (2/5), (3/5)][ 2, 3; 2, 3][ -3, 1; 2, 1] = [ 0, 0; 0, 5]

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

*********************************************

Question: Find the algebraic and geometric multiplicity of each eigenvalue and, if possible, diagonalize the matrix

[7, -2, 2; 8, -1, 4; 8, 4, -1 ].

The characteristic equation of this matrix is (lambda - 3)^2 ( lambda + 1).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The algebraic multiplicity of Lambda_1 = 3 is two, and Lambda_2 is one.

Which can be seen from the characteristic equation above.

for Lambda_1 = 3 we solve (A - 3I)x_1 = 0

[ 4, -2, 2; 8, -4, 4; 8, 4, -4][ x_1; x_2; x_3] = [ 0; 0; 0]

Using elementary row operations:

-2R1 + R2 -> R2

Swap R2, R3

-2R1 + R2 -> R2

(1/4)R2 + R1 -> R1

(1/4)R1 -> R1

(1/8)R2 -> R2

[ 1, 0, 0; 0, 1, -1; 0, 0, 0][ x_1; x_2; x_3] = [ 0; 0; 0]

Which results in simple equations:

x_1 = 0 and x_2 - x_3 = 0

Solution would be x_1 = [ 0; 1; 1]

With geometric Multipicity of 1

--------------------------------------------------------

for Lambda_2 = -1 we solve (A + I)x_2 = 0

[ 8, -2, 2; 8, 0, 4; 8, 4, 0][ x_1; x_2; x_3] = [ 0; 0; 0]

Using elementary row operations puts the system into rref

[ 1, 0, 0; 0, 1, 0; 0, 0, 1][ x_1; x_2; x_3] = [ 0; 0; 0]

Which results in simple equations:

x_1 = 0

x_2 = 0

x_3 = 0

Solution would be x_1 = [ 0; 0; 0]

With geometric Multipicity of 0

--------------------------------------------------------------

Repeated Eigenvalue Lambda_1 = 3

v_1 = [ 0; 1; 1]

y_1(t) = e^(3t) v_1

y_2(t) = te^(3t) v_1 + e^(3t) v_2

(A - lambda*I)v_2 = v_1

[ 4, -2, 2; 8, -4, 4; 8, 4, -4][ x_1; x_2; x_3] = [ 0; 1; 1]

RREF

[ 1, 0, 0; 0, 1, -1; 0, 0, 0][ x_1; x_2; x_3] = [ 0; 0; 1]

yeilds equations:

x_1 = 0

x_2 - x_3 = 0

v_2 = [ 0; 1; 1]

with geometric multiplicity of 1

----------------------------------------------------------------

y_1 = e^(3t) [ 0; 1; 1] = [ 0; e^(3t); e^(3t)]

y_2 = te^(3t) [ 0; 1; 1] + e^(3t) [ 0, 1, 1] = [ 0; te^(3t) + e^(3t); te^(3t) + e^(3t)]

Psi(t) = T = [ 0, 0, 0; 1, 1, 0; 1, 1, 0]

since det[Psi(t)] = 0

cannot diagonalize

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

*********************************************

Question: Find the algebraic and geometric multiplicity of each eigenvalue and, if possible, diagonalize the matrix

[ 5, -1, 1; 14, -3, 6; 5, -2, 5 ].

The characteristic equation of this matrix is (lambda - 2)^2 ( lambda -3).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Lambda_1 = 2

which has an algebraic multiplicity of 2

and Lambda_2 = 3

which has an algebraic multiplicity of 1

This all can be seen from the charactersitic equation given.

First for Lambda_1 = 2, we solve (A - 2I)x_1 = 0

[ 3, -1, 1; 14, -5, 6; 5, -2, 3][ x_1; x_2; x_3] = [ 0; 0; 0]

RREF

[ 1, 0, -1; 0, 1, -4; 0, 0, 0][ x_1; x_2; x_3] = [ 0; 0; 0]

Which yeilds simple equations:

x_1 - x_3 = 0

x_2 - 4(x_3) = 0

A simple solution to this set of equations would be:

x_1 = [ 1; 4; 1]

With a Geometric Multiplicity of 1

---------------------------------------------------------------

Since this is a repeated Eigenvalue

y_1 = e^(2t) v_1

v_1 = [ 1, 4, 1]

y_2 = te^(2t) v_1 + e^(2t) v_2

(A - 2I)v_2 = v_1

[ 3, -1, 1; 14, -5, 6; 5, -2, 3][ x_1; x_2; x_3] = [ 1; 4; 1]

RREF

[ 1, 0, -1; 0, 1, -4; 0, 0, 0][ x_1; x_2; x_3] = [ 1; 4; 1]

Which yeilds simple equations:

x_1 - x_3 = 1

x_2 - 4(x_3) = 2

A simple solution to this set would be:

v_2 = [ 2; 6; 1]

----------------------------------------------------------------

For lambda_2 = 3 we solve (A - 3I)x_2 = 0

[ 2, -1, 1; 14, -6, 6; 5, -2, 2][ x_1; x_2; x_3] = [ 0; 0; 0]

RREF

[ 1, 0, 0; 0, 1, -1; 0, 0, 0][ x_1; x_2; x_3] = [ 0; 0; 0]

Which yeilds equations:

x_1 = 0, and x_2 - x_3 = 0

A solution to this simple set:

x_2 = [ 0, 1, 1]

Which has a geometric multiplicity of 1

-----------------------------------------------------------------

T = [ 1, 2, 0; 4, 6, 1; 1, 1, 1]

det(T) = (1)[ 6, 1; 1, 1] - (2)[ 4, 1; 1, 1] + (0)[ 4, 6; 1, 1]

= 6 - 1 - 2(4) + (2)(1) + 0

= 8 - 9

= -1

T^(-1) = 1/det * [ adj(M)]

----------------------------------------------------------------

Finding the adj(M).

M = [ 1, 2, 0; 4, 6, 1; 1, 1, 1]

M^T = [ 1, 4, 1; 2, 6, 1, 0, 1, 1]

--------------------------------------------

determinants of the Mini Matricies of M^T

M_11 = [ 6, 1; 1, 1] = 5

M_12 = [ 2, 1; 0, 1] = 2

M_13 = [ 2, 6; 0, 1] = 2

M_21 = [ 4, 1; 1, 1] = 3

M_22 = [ 1, 1; 0, 1] = 1

M_23 = [ 1, 4; 0, 1] = 1

M_31 = [ 4, 1; 6, 1] = -2

M_32 = [ 1, 1; 2, 1] = -1

M_33 = [ 1, 4; 2, 6] = -2

Adj(M) =

[ 5, 2, 2; 3, 1, 1; -2, -1, -2][ +, -, +; -, +, -; +, -, +] = [ 5, -2, 2; -3, 1, -1; -2, 1, -2]

T^(-1) = -1*[ 5, -2, 2; -3, 1, -1; -2, 1, -2]

= [ -5, 2, -2; 3, -1, 1; 2, -1, 2]

Now to diagonalize:

T^(-1)AT = D

[ -5, 2, -2; 3, -1, 1; 2, -1, 2][ 5, -1, 1; 14, -3, 6; 5, -2, 5 ][ 1, 2, 0; 4, 6, 1; 1, 1, 1] = [ 2, 1, 0; 0, 2, 0; 0, 0, 3]

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

*********************************************

Question: Solve the system

y ' = [ -4, -6; 3, 5 ] y + [e^(2 t) - 2 e^t; -e^(2 t) + e^t]

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y_c(t)

y' = [ -4, -6; 3, 5]y

P(lambda) = det[ A - lambda_1*I] = [ (-4-lambda), -6; 3, (5 - lambda)]

= (-4-lambda)(5 - lambda) - (-6)(3)

= lambda^2 - 5*lambda + 4*lambda - 20 + 18

= lambda^2 - lambda -2

= (lambda - 2)(lambda + 1)

Lambda_1 = 2

Lambda_2 = -1

--------------------------------------------------------------------------

for Lambda_1 = 2 we solve (A - 2I)x_1 = 0

[ -6, -6; 3, 3][ x_1; x_2] = [ 0; 0]

RREF

[ 1, 1; 0, 0][ x_1; x_2] = [ 0; 0]

Which yeilds simple equation:

x_1 + x_2 = 0

A solution would be x_1 = [ 1, -1]

---------------------------------------

for Lambda_2 = -1 we solve (A + I)x_2 = 0

[ -3, -6; 3, 6][ x_1; x_2] = [ 0; 0]

RREF

[ 1, 2; 0, 0][ x_1; x_2] = [ 0; 0]

Which yeilds simple equation:

x_1 + 2(x_2) = 0

A solution would be x_1 = [ 2, -1]

-------------------------------------------

Solutions:

y_1 = e^(2t) [ 1; -1] = [ e^(2t); -e^(2t)]

y_2 = e^(-t) [ 2, -1] = [ 2e^(-t); -e^(-t)]

y_c(t) = [ e^(2t), 2e^(-t); -e^(2t), -e^(-t)][ c_1; c_2]

---------------------------------------------------------------------------

Since g(t) = [ e^(2t), -2e^(t); -e^(2t), e^t]

g_1(t) = e^(2t) [1, -1]

g_2(t) = e^t [ -2, 1]

u' = [ -4, -6; 3, 5]u + e^(2t) [ 1, -1]

v' = [ -4, -6; 3, 5]v + e^t [ -2, 1]

U_p(t) = e^(2t) a

2e^(2t) a = [ -4, -6; 3, 5] (e^(2t)*a) + e^(2t) [1, -1]

[2, 0; 0, 2]a = [ -4, -6; 3, 5]a + [ 1, -1]

[ 6, 6; -3, -3]a = [ 1, -1]

RREF

[ 1, 1; 0, 0][ a_1; a_2] = [ 0, 1]

Which yeilds equation: a_1 + a_2 = 0

a = [ 1, -1]

Up(t) = e^(2t)a = [ e^(2t); -e^(2t)]

---------------------------------------------------

Vp(t) = a*e^t

a*e^t = [ -4, -6; 3, 5] (a*e^t) + e^t [ -2, 1]

a = [ -4, -6; 3, 5]a + [ -2, 1]

[1, 0; 0, 1]a = [ -4, -6; 3, 5]a + [ -2, 1]

[ 5, 6; -3, -4]a = [ -2, 1]

RREF

[1, 0; 0, 1][ a_1; a_2] = [ -1; (1/2)]

Which yeilds equations:

a_1 = -1

a_2 = (1/2)

a = [ -1; (1/2)]

Vp(t) = a*e^t = [ -e^t; (1/2)e^t]

----------------------------------------------------

y_p(t) = u(t) + v(t) = [ e^(2t) - e^t; -e^(2t) + (1/2)e^t]

General solution:

y(t) = y_c(t) + y+p(t)

=[ e^(2t), 2e^(-t); -e^(2t), -e^(-t)][c_1; c_2] + [ e^(2t) - e^t; -e^(2t) + (1/2)e^t]

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

*********************************************

Question: Solve

x '' = [ 6, 7; -15, -16] x

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

x'' + Ax = 0

A = [ -6, -7; 15, 16]

P(lambda) = det[A -lambda*I] = 0

= [(-6-lambda), -7; 15, (16 - lambda)]

= (-6-lambda)(16 - lambda) - (-7)(15)

= lambda^2 - (16)lambda + (6)lambda - 96 + 105 = 0

= lambda^2 - (10)lambda + 9

= (lambda - 9)(lambda - 1)

Lambda_1 = 9

Lambda_2 = 1

-----------------------------------------------------

for lambda_1 = 9 we solve (A - 9I)x_1 = 0

[ -15, -7; 15, 7][x_1; x_2] = [0, 0]

RREF

[ 1, (7/15); 0, 0][x_1; x_2] = [0, 0]

Which results in simple equations:

x_1 + (7/15)x_2 = 0

A solution to this may be

x_1 = [ 7, -15]

------------------------------------------------------

for lambda_2 = 1 we solve (A - I)x_2 = 0

[ -7, -7; 15, 15][x_1; x_2] = [0, 0]

RREF

[ 1, 1; 0, 0][x_1; x_2] = [0, 0]

Which results in simple equations:

x_1 + x_2 = 0

A solution to this may be

x_1 = [ 1, -1]

-----------------------------------------------------

T = [ 7, 1; -15, -1]

x(t) = Tw(t)

Tw(t)'' + ATw(t) = 0

w'' + Dw = 0

Now to diagonalize

T^(-1)AT = D

det[T] = (7)(-1) - (1)(-15) = 8

T^(-1) = (1/det(T)) [d, -b; -c, a]

= (1/8) [ -1, -1; 15, 7]

= [ (-1/8), (-1/8); (15/8), (7/8)]

T^(-1)AT = D

[ (-1/8), (-1/8); (15/8), (7/8)][ -6, -7; 15, 16][ 7, 1; -15, -1] = [9, 0; 0, 1]

w'' + Dw = 0 becomes:

(w_1)'' + 9(w_1) = 0

and

(w_2)'' + (w_2) = 0

w_1 = Asin(3t) + Bcos(3t)

w_2 = Asin(t) + Bcos(t)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Your work looks good. Let me know if you have any questions. &#