#$&* course Mth 279 April 3 around 7pm. Query 06 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: If the equation is exact, solve the equation (6 t + 3 t^3 ) y ' + 6 y + 9/2 t^2 y^2 = -t, with y(2) = 1. * YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: M(t,y) = [6y + 9/2t^2y^2 + t] N(t,y) = [6t + 3t^3] M_y = 9yt^2 + 6 N_t = 9t^2 + 6 M_y does NOT equal N_t, therefore, it’s not exact. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.3.6. If the equation is exact, solve the equation y ' = ( y cos(t y) + 1) / (t cos(t y) + 2 y e^y^2) with y(0) = pi. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 0 = [( y cos(t y) + 1) / (t cos(t y) + 2 y e^y^2)] - y’ 0 = [( y cos(t y) + 1)] - [(t cos(t y) + 2 y e^y^2)y’] M(t,y) = (y cos (ty) + 1) N(t,y) = (t cos(t y) + 2 y e^y^2) M_y = cos (ty) - y*sin(ty)*t N_t = cos (ty) - t*sin(ty)*y EXACT. Y(0) = pi H_t = M(t,y) H_y = N(t,y) H(t,y) = C Int (y cos (ty) + 1 dt) = H(t,y) H(t,y) = sin(ty) + t + g(t) H_t = cos(ty) * y + 1 + (dg/dt) (dg/dt) = C1 = g(t) This is where I got lost…. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.3.10. If N(y, t) * y ' + t^2 + y^2 sin(t) = 0 is exact, what is the most general possible form of N(y, t)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: If this is exact, that means that M_y must equal N_t. M_y = [2y*sin(t)] N_t has to equal the same thing. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.3.12. If y = -t - sqrt( 4 - t^2 ) is the solution of the differential equation (y + a t) y ' + (a y + b t) = 0 with initial condition y(0) = y_0, what are the values of a, b and y_0? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: M(t,y) = (ay + bt) N(t,y) = (y + at) M_y = a N_t = a If y = -t - sqrt( 4 - t^2 ) is the solution, you will have to undo the implicit differentiation, and see what H(t,y) and g(t) is and you will then find out what the values of the following variables, knowing that H_t = M(t,y) and H_y = N(t,y). confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: