Query 14

#$&*

course Mth 279

April 30 around 3:15pm.

Query 14 Differential Equations*********************************************

Question: Decide whether y_1 = 3 e^t, y_2 = e^(t + 3) are solutions to the equation y '' - y = 0. If so determine whether the two solutions are linearly independent. If the solutions are linearly independent then find the general solution, as well as a particular solution for which y (-1) = 1 and y ' (-1) = 0.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y1 = 3 e^t

y2 = e^(t + 3)

y '' - y = 0 (main equation)

Plug in y1 for all y’s in main equation:

(3e^t)’’ - (3e^t) = 0

= 0, therefore y1 IS a solution.

Plug in y2 for all y’s in main equation:

(e^(t+3))’’ - (e^(t + 3)) = 0

= 0, therefore y2 is ALSO a solution.

To test for linearly independence, use the equation:

cf(x) + kg(x) = 0 (c and k are constants)

c (3e^t) + k(e^(t+3)) = 0

3ce^t + ke^(t+3) = 0

This is where I’m stuck….do I plug in y (-1) = 1 and y ' (-1) = 0 at this point?!

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

@& To check for linear independence you can calculate the Wronskian.

You will find that the Wronskian is zero, so the solutions are not linearly independent.*@

*********************************************

Question: Decide whether y_1 = e^(-t) and y_2 = 2 e^(1 - t) are solutions to the equation y '' + 2 y ' + y = 0. If so determine whether the two solutions are linearly independent. If the solutions are linearly independent then find the general solution, as well as a particular solution for which y (0) = 1 and y ' (0) = 0.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y1 = e^(-t)

y2 = 2 e^(1 - t)

y '' + 2 y ' + y = 0 (main equation)

Plug in y1 for all y’s in main equation:

(e^(-t))’’ - (e^(-t)) = 0

= 0, therefore y1 IS a solution.

Plug in y2 for all y’s in main equation:

(2 e^(1 - t))’’ - (2 e^(1 - t))= 0

= 0, therefore y2 is ALSO a solution.

To test for linearly independence, use the equation:

cf(x) + kg(x) = 0 (c and k are constants)

c (e^(-t)) + k(2 e^(1 - t))= 0

ce^(-t) + 2ke^(1-t) = 0

Just like the previous problem, this is where I’m stuck….do I plug in y (0) = 1 and y ' (0) = 0 at this point?!

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

@& Find the Wronskian. I believe you'll find these solutions not to be a fundamental set; the Wronskian will be zero.*@

*********************************************

Question: Suppose y_1 and y_2 are solutions to the equation

y '' + alpha y ' + beta y = 0

and that y_1 = e^(2 t). Suppose also that the Wronskian is e^(-t).

What are the values of alpha and beta?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y '' + alpha y ' + beta y = 0

W(t) = e^(-t)

W(t) = f(t)g’(t) - g(t)f’(t)

e^(-t) = f(t)g’(t) - g(t)f’(t)

e^(-t) = [g’(t)*e^(2t)] - [g(t)*2e^(2t)]

Need to solve for g(t) and g’(t)

That will then tell you what alpha and beta is in the “second order linear homogeneous” equation: y '' + alpha y ' + beta y = 0

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

@& The Wronskian is the determinant of the matrix

[ y_1, y_2; y_1 ' , y_2 ' ]

which in this case could be expresses as

det [ f, g; f ' , g ' ] = f g ' - f ' g.*@

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!