#$&* course Mth 279 April 30 around 4:40pm. Query 17 Differential Equations*********************************************
.............................................
Given Solution: Our characteristic equation is 25 r^2 + 20 r + 4 = 0 with repeated solution r = -2/5 yielding solution set {e^(-2/5 t), t e^(-2/5 t) } and general solution y(t) = A e^(-2/5 t) + B t e^(-2/5 t) satisfying y(5) = 4 e^-2 and y ' (5) = -3/5 e^-2. These conditions lead to the equations A e^-2 + 5 B e^-2 = 4 e^-2 -2/5 A e^(-2) - 2/5 * 5 B e^-2 + B e^-2 = -3/5 e^-2, or dividing both equations through by e^-2, and multiplying through the second by 5 A + 5 B = 4 -2 A - 5 B = -3. The solution is A = 1, B = 3/5 &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Solve the equation 3 y '' + 2 sqrt(3) y ' + y = 0, y(0) = 2 sqrt(3), y ' (0) = 3 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The characteristic equation is 3 r^2 + 2 sqrt(3)r + 1 = 0 with repeated solution r = ? (on the previous question, I asked how to find the repeated solution, but ill solve what I can without it) I cant find the yielding solution set { } without knowing the repeated solution, right?! The general solution: y(t) = A e^(r) + B t e^(rt) satisfying y(0) = 2 sqrt(3) and y' (0) = 3 These conditions lead to the equations: I would then plug in the r value into the y(t) equation above and solve for A and B.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Solve the equation y '' - 2 cot(t) y ' + (1 + 2 cot^2 t) y = 0, which has known solution y_1(t) = sin(t) You will use reduction of order, find intervals of definition and interval(s) where the Wronskian is continuous and nonzero. See your text for a more complete statement of this problem. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Reduction of order: y2(t) = v(t)y1(t) y2(t) = v*sin(t) y2(t) = v*cos(t) y2(t) = v*(-sin(t)) Plug into main equation: y '' - 2 cot(t) y ' + (1 + 2 cot^2 t) y = 0 = [v*(-sin(t))] - [2 cot(t)* (v*cos(t))] + (1 + 2 cot^2t)*(v*sin(t)) = 0 After rearranging and simplifying, I got: = [(-2*(cos(t) - sin(t))*v] / [tan(t)] Im doing something wrong here, I think. It might be my derivatives at the beginning. Should I have done like v and v?! Anyways, after you get this, you should do v(t) = int ( w dt) and choose the constants to be anything. You will then get the second solution which will then let you find the general solution for this problem.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ________________________________________ #$&*