#$&* course Mth 279 May 7 around 1:30pm. Resubmitting this, never showed up in portfolio. Query 13 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the largest interval on which the equation t y '' + sin(2 t) / (t^2 - 9) y ' + 2 y = 0 has a solution, with the initial conditions y(1) = 0, y ' (1) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: t y '' + sin(2 t) / (t^2 - 9) y ' + 2 y = 0 (t0) = 1 There ARE restrictions, due to the denominator, t CANNOT equal 3. Theorem 4.1 says to let p(t), q(t), and g(t) be continuous functions on the interval (a,b) and let t0 be in (a,b), then the initial problem has a unique solution defined on the entire interval (a,b). So, y0 = 0 and y0’ = 1 p(t) = sin(2 t) / (t^2 - 9) q(t) = 2 g(t) = 0 t-interval: (-inf < t < 3)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ________________________________________ #$&*
#$&* course Mth 279 May 7 around 1:30pm. Resubmitting this, never showed up in portfolio. Query 13 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the largest interval on which the equation t y '' + sin(2 t) / (t^2 - 9) y ' + 2 y = 0 has a solution, with the initial conditions y(1) = 0, y ' (1) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: t y '' + sin(2 t) / (t^2 - 9) y ' + 2 y = 0 (t0) = 1 There ARE restrictions, due to the denominator, t CANNOT equal 3. Theorem 4.1 says to let p(t), q(t), and g(t) be continuous functions on the interval (a,b) and let t0 be in (a,b), then the initial problem has a unique solution defined on the entire interval (a,b). So, y0 = 0 and y0’ = 1 p(t) = sin(2 t) / (t^2 - 9) q(t) = 2 g(t) = 0 t-interval: (-inf < t < 3)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ________________________________________ #$&*