Query 4 

#$&*

course Mth 272

06/06 7 pm

uestion: `q4.6.1 (previously 4.6.06 (was 4.5.06)) y = C e^(kt) thru (3,.5) and (4,5) 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

 

5= Ce^(k(4)) = 10= e^k

  .5= Ce^(k(3))

 

k= 2.3

y= C e^(2.3(t))

.5= Ce^(2.3(3))

C= .0005

 

 

 y= .0005 e^(2.3(t))

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

 

`a Substituting the coordinates of the first and second points into the form y = C e^(k t) we obtain the equations

 

.5 = C e^(3*k)and

5 = Ce^(4k) .

 

Dividing the second equation by the first we get

 

5 / .5 = C e^(4k) / [ C e^(3k) ] or

10 = e^k so

k = 2.3, approx. (i.e., k = ln(10) )

 

Thus .5 = C e^(2.3 * 3)

.5 = C e^(6.9)

C = .5 / e^(6.9) = .0005, approx.

 

The model is thus close to y =.0005 e^(2.3 t). **

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 Self-critique Rating: Ok

*********************************************

Question: `q 4.6.2 (previously 4.6.10 (was 4.5.10)) solve dy/dt = 5.2 y if y=18 when t=0

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

dy/y= 5.2dt

lny= 5.2t + C 

 y= e^(5.2t + C)

y= e^5.2t * e^C

e^c= 18

 y= e^(5.2t) * 18

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

 

`a The details of the process:

 

dy/dt = 5.2y. Divide both sides by y to get

dy/y = 5.2 dt. This is the same as

(1/y)dy = 5.2dt. Integrate the left side with respect to y and the right with respect to t:

ln | y | = 5.2t +C. Therefore

e^(ln y) = e^(5.2 t + c) so

y = e^(5.2 t + c). This is the general function which satisfies dy/dt = 5.2 y.

 

Now e^(a+b) = e^a * e^b so

y = e^c e^(5.2 t). e^c can be any positive number so we say e^c = A, A > 0.

y = A e^(5.2 t). This is the general function which satisfies dy/dt = 5.2 y.

 

When t=0, y = 18 so

 

18 = A e^0. e^0 is 1 so

A = 18. The function is therefore

 

y = 18 e^(5.2 t). **

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: Ok

*********************************************

Question: `q4.6.5 (previously 4.6.25 (was 4.5.25))  Init investment $1000, rate 12%.

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1000 e^(.12t)

1000 e^(.105 t) = 2 * 1000.

e^(.12t) = 2

 t= 5.78 years

  

 

  

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

 

`a

Rate = .12 and initial amount is $1000 so we have

amt = $1000 e^(.12 t).
The equation for the doubling time is
1000 e^(.105 t) = 2 * 1000. 
Dividing both sides by 1000 we gete^(.12 t) = 2. Taking the natural log of both sides.12t = ln(2) so thatt = ln(2) / .12 = 5.8 yrs approx.

after 10 years we have

• amt = 1000e^(.12(10)) = $3 320

after 25 yrs we have

• amt = 1000 e^(.12(25)) = $20 087

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 Self-critique Rating: Ok

*********************************************

Question: `q 4.6.8 (previously 4.6.44 (was 4.5.42)) demand fn p = C e^(kx) if when p=$5, x = 300 and when p=$4, x = 400

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

 5= C e^(k*300)) = 1.25= C e^(-100 k)

 4= C e^(k*400))

1.25 = e^(-100 k ) 

 ln 1.25= -100k

 k = -.002

  

 5= C e^(-.002*300)

 C= 9.11

 

 p= 9.11e^(-.002t))

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

 

`a You get 5 = C e^(300 k) and 4 = C e^(400 k).

 

If you divide the first equation by the second you get

 

5/4 = e^(300 k) / e^(400 k) so

5/4 = e^(-100 k) and

k = ln(5/4) / (-100) = -.0022 approx..

 

Then you can substitute into the first equation:

}

5 = C e^(300 k) so

C = 5 / e^(300 k) = 5 / [ e^(300 ln(5/4) / -100 ) ] = 5 / [ e^(-3 ln(5/4) ] .

 

This is easily evaluated on your calculator. You get C = 9.8, approx.

 

So the function is p = 9.8 e^(-.0022 t). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 Self-critique Rating: Ok

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q4.6.5 (previously 4.6.25 (was 4.5.25))  Init investment $1000, rate 12%.

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1000 e^(.12t)

1000 e^(.105 t) = 2 * 1000.

e^(.12t) = 2

 t= 5.78 years

  

 

  

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

 

`a

Rate = .12 and initial amount is $1000 so we have

amt = $1000 e^(.12 t).
The equation for the doubling time is
1000 e^(.105 t) = 2 * 1000. 
Dividing both sides by 1000 we gete^(.12 t) = 2. Taking the natural log of both sides.12t = ln(2) so thatt = ln(2) / .12 = 5.8 yrs approx.

after 10 years we have

• amt = 1000e^(.12(10)) = $3 320

after 25 yrs we have

• amt = 1000 e^(.12(25)) = $20 087

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 Self-critique Rating: Ok

*********************************************

Question: `q 4.6.8 (previously 4.6.44 (was 4.5.42)) demand fn p = C e^(kx) if when p=$5, x = 300 and when p=$4, x = 400

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

 5= C e^(k*300)) = 1.25= C e^(-100 k)

 4= C e^(k*400))

1.25 = e^(-100 k ) 

 ln 1.25= -100k

 k = -.002

  

 5= C e^(-.002*300)

 C= 9.11

 

 p= 9.11e^(-.002t))

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

 

`a You get 5 = C e^(300 k) and 4 = C e^(400 k).

 

If you divide the first equation by the second you get

 

5/4 = e^(300 k) / e^(400 k) so

5/4 = e^(-100 k) and

k = ln(5/4) / (-100) = -.0022 approx..

 

Then you can substitute into the first equation:

}

5 = C e^(300 k) so

C = 5 / e^(300 k) = 5 / [ e^(300 ln(5/4) / -100 ) ] = 5 / [ e^(-3 ln(5/4) ] .

 

This is easily evaluated on your calculator. You get C = 9.8, approx.

 

So the function is p = 9.8 e^(-.0022 t). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 Self-critique Rating: Ok

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Good responses. Let me know if you have questions. &#