Query 29

#$&*

course Mth 272

07/28 10 pm

Question: `qQuery problem 7.4.50 (was 7.4.46) slope in x direction and y direction for z=x^2-y^2 at (-2,1,3) 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

2x at (-2,1,3) slope: -4

-2y at y=1 slope: -2 

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a The x derivative is 2x; at (-2,1,3) we have x = -2 so the slope is 2 * -2 = -4.

 

The slope in the y direction is the y partial derivaitve -2y; at y = 1 this is -2

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 Self-critique Rating: Ok

*********************************************

Question: `qWhat is the slope in the x direction at the given point? Describe specifically how you obtained your result.

The slope in the x direction is 4 because der is 2x and x= -2

 

 

*********************************************

Question: `qQuery problem 7.4.65 (was 7.4.61) all second partials of ln(x-y) at (2,1)

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

fx= 1/(x-y)

fxx= -/(x-y)^2

fxy= (x-y)'* -1(x-y)^-2 = 1/(x-y)^2

fy= -1/(x-y)

fyy= 1/ (x-y)^2

fyx= 1/(x-y)^2

plug in (2,1) for every second partials

fxx= -1

fyy= -1

fxy= fyx + 1

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a The first x derivative is found by the Chain Rule to be (x-y)' * 1/(x-y), where the ' is derivative with respect to x. We get fx = 1 * 1 / (x-y) = 1 / (x-y), or if you prefer (x-y)^-1, where fx means the first x derivative.

 

The x derivative of this expression is the derivative of (x-y)^-1, which by the Chain Rule is fxx = (x-y)' * -1 (x-y)^-2 = 1 * -1 * (x-y)^-2 = -1/(x-y)^2; here fxx means second x derivative and the ' means derivative with respect to x.

 

fxy is the y derivative of fx, or the y derivative of (x-y)^-1, which by the Chain Rule is fxy = (x-y)' * -1 (x-y)^-2 = -1 * -1 * (x-y)^-2 = 1/(x-y)^2; here fxy means the y derivative of the x derivative and the ' means derivative with respect to y.

 

The first y derivative is found by the Chain Rule to be (x-y)' * 1/(x-y), where the ' is derivative with respect to y. We get fy = -1 * 1 / (x-y) = -1 / (x-y), or if you prefer -(x-y)^-1, where fy means the first y derivative.

 

The y derivative of this expression is the derivative of -(x-y)^-1, which by the Chain Rule is fyy = -(x-y)' * -1 (x-y)^-2 = -[1 * -1 * (x-y)^-2] = 1/(x-y)^2; here fyy means second y derivative and the ' means derivative with respect to y.

 

fyx is the x derivative of fy, or the x derivative of -(x-y)^-1, which by the Chain Rule is fyx = -(x-y)' * -1 (x-y)^-2 = -[1 * -1 * (x-y)^-2] = 1/(x-y)^2; here fyx means the x derivative of the y derivative and the ' means derivative with respect to x.

 

When evaluated at (2, 1) the denominator (x - y)^2 is 1 for every second partial. So we easily obtain

 

fxx = -1

fyy = -1

fxy = fyx = +1.

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 Self-critique Rating: Ok

 

*********************************************

Question: `qQuery problem 7.4.68 R = 200 x1 + 200 x2 - 4x1^2 - 8 x1 x2 - 4 x2^2; R is revenue, x1 and x2 production of plant 1 and plant 2

 

 

*********************************************

Question: `qWhat is the marginal revenue for plant 1?

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

200- 8x1- 8x2 

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a The derivative of R with respect to x1 is 200 + 0 - 4 (2 x1) - 8 x2 - 0; All all derivatives treat x1 as the variable, x2 as constant. Derivatives of 200 x2 and -4 x2^2 do not involve x1 so are constant with respect to x1, hence are zero.

 

So the marginal revenue with respect to plant 1 is 200 - 8 x1 - 8 x2.

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 Self-critique Rating: Ok

*********************************************

Question: `qWhat is the marginal revenue for plant 2?

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

200- 8x1- 8x2 

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a The derivative of R with respect to x2 is 0 + 200 - 0 - 8 x1 - 4 ( 2 x2) = 200 - 8 x1 - 8 x2; All all derivatives treat x2 as the variable, x1 as constant.

 

So the marginal revenue with respect to plant 2 is 200 - 8 x1 - 8 x2.

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 

 Self-critique Rating: Ok

*********************************************

Question: `qWhy should the marginal revenue for plant 1 be the partial derivative of R with respect to x1?

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Plant 1 is the change in x1 so the derivative of x1 has to be taken.  Marginal revenue shows the change in rev.

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a Marginal revenue is the rate at which revenue changes per unit of increased production. The increased production at plant 1 is the change in x1, so we use the derivative with respect to x1.

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 Self-critique Rating: Ok

*********************************************

Question: `qWhy, in real-world terms, might the marginal revenue for each plant depend upon the production of the other plant?

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If a plant depends on another plant for any reason the marginal revenue would depend on the production of the other plant as well.

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a The marginal revenues for each plant may depend on the each other for a variety of reasons; for example if one plant awaits shipment of a part from the other, or if one plant is somewhat slow resulting in a bottleneck.

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 Self-critique Rating: Ok

*********************************************

Question: `qWhat is is about the function that ensures that the marginal revenue for each plant will depend on the production of both plants?

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Both marg revs contain x1 and x2, which shows they depend on each other  

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a The specific reason is that both derivatives contain x1 and x2 terms, so both marginal revenues depend on both the production of plant 1 and of plant 2.

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: ok

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating: