Query 00

#$&*

course PHY 202

2/1 about 1:45 pm

ph2 query 0Most queries in this course will ask you questions about class notes, readings, text problems and experiments. Since the first two assignments have been lab-related, the first two queries are related to the those exercises. While the remaining queries in this course are in question-answer format, the first two will be in the form of open-ended questions. Interpret these questions and answer them as best you can.

Different first-semester courses address the issues of experimental precision, experimental error, reporting of results and analysis in different ways and at different levels. One purpose of these initial lab exercises is to familiarize your instructor with your work and you with the instructor 's expectations.

Comment on your experience with the three lab exercises you encountered in this assignment or in recent assignments.

*********************************************

Question: This question, related to the use of the TIMER program in an experimental situation, is posed in terms of a familiar first-semester system.

Suppose you use a computer timer to time a steel ball 1 inch in diameter rolling down a straight wooden incline about 50 cm long. If the computer timer indicates that on five trials the times of an object down an incline are 2.42sec, 2.56 sec, 2.38 sec, 2.47 sec and 2.31 sec, then to what extent do you think the discrepancies could be explained by each of the following:

• The lack of precision of the TIMER program.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Since the timer program times in intervals of 1/64 and in my lab exercise my triggering was within approx. +/- 0.02 seconds, the timer program is more precise than myself. The timing intervals above vary by 0.25 or approx. +/- 0.125 s, so the timer program intervals did not account for the uncertainties.

#$&*

• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Since I showed above, my triggering was less precise than the timer program, I feel that the human triggering definitely causes more uncertainty in the results than the timer program.

#$&*

• Actual differences in the time required for the object to travel the same distance.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Since the mass of the ball is constant, frictional force remains constant, and assuming the distance is constant, there should be little to no variance in the actual time it takes the ball to reach the end of the incline.

#$&*

• Differences in positioning the object prior to release.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Since ‘dt = ‘ds / v_ave, a change in the distance will affect the time it takes to travel down the incline. With minimal changes in the starting postions, likely less than 1 cm, the result would be minimal. Another thing to consider, if ‘ds changes, it will also increase v_ave, so both the numerator and denominator would increase, resulting in similar, but definitely slightly greater times, since v_ave change would be minimal.

#$&*

• Human uncertainty in observing exactly when the object reached the end of the incline.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Depending on the angle that you are looking at the end of the incline, it is definitely possible to misjudge when the ball reaches the end of the incline, possibly by as much as about 0.5 s.

#$&*

*********************************************

Question: How much uncertainty do you think each of the following would actually contribute to the uncertainty in timing a number of trials for the ball-down-an-incline lab?

• The lack of precision of the TIMER program.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Additional trials would have a very small effect to the minimal uncertainty associated with the timer program.

#$&*

• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Since there is some uncertainty in the human triggering, additional trials will help to reduce the uncertainty, but it would likely increase the range in the intervals as well.

#$&*

• Actual differences in the time required for the object to travel the same distance.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Again, assuming all things constant as stated above, there should be no uncertainty associated with the time required, so additional trials would not help.

#$&*

• Differences in positioning the object prior to release.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

The uncertainty with the initial position is similar to the uncertainty with the human trigger, so I feel additional trials would slightly help.

#$&*

• Human uncertainty in observing exactly when the object reached the end of the incline.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

I feel that this creates the largest uncertainty so additional trials would have a great affect on the precision if you take an average of all trials. It would likely increase the range in the intervals.

#$&*

*********************************************

Question: What, if anything, could you do about the uncertainty due to each of the following? Address each specifically.

• The lack of precision of the TIMER program.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

I feel that since the timer interval is 1/64 or less than 0.02 s, there is no real need to change this. It is smaller than any other factor.

#$&*

• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Eliminate the human factor and have another way to trigger the timer program, such as a laser to stop the time when the ball passes by.

#$&*

• Actual differences in the time required for the object to travel the same distance.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

No need. If the ball travels the same distance, the uncertainty is next to nothing.

#$&*

• Differences in positioning the object prior to release.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Set a gate of some sort to release the ball from the exact same position each time.

#$&*

• Human uncertainty in observing exactly when the object reached the end of the incline.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

The laser than I mention above to eliminate the uncertainty in the human trigger would help in this as well.

#$&*

"

&#Your work looks good. Let me know if you have any questions. &#