timer program

#$&*

phy 201

Your 'timer program' report has been received. Scroll down through the document to see any comments I might have inserted, and my final comment at the end.

#$&* Your General Comment **

#$&* Describe what you see on your first 10 clicks **

45 minutes

#$&*Your TIMER data from 20 fast clicks **

Operating the TIMER program

It is easy to operate the Timer program.  All you have to do is click on the button labeled Click to Time Event.

Click that button about 10 times and describe what you see.

 The timer program lists the time that passed between my clicking on the button.

#$&*

Now click on Initialize Counter, which will clear all the data from the timer window.  Click the mouse as fast as you can until the TIMER window fills up.  Be sure you get at least 20 time intervals.

If you miss a click, try again.  Keep trying until you get at least 20 intervals without a missed or delayed click.

Copy your data starting in the next line:

  1 7.550781 7.550781

2 7.753906 .203125

3 7.941406 .1875

4 8.113281 .171875

5 8.269531 .15625

6 8.425781 .15625

7 8.582031 .15625

8 8.738281 .15625

9 8.878906 .140625

10 9.050781 .171875

11 9.207031 .15625

12 9.378906 .171875

13 9.550781 .171875

14 9.722656 .171875

15 9.894531 .171875

16 10.06641 .171875

17 10.23828 .171875

18 10.37891 .140625

19 10.51953 .140625

20 10.66016 .140625

21 10.81641 .15625

22 10.95703 .140625

23 11.11328 .15625

24 11.26953 .15625

25 11.44141 .171875

 

#$&*

You got at least 20 time intervals.  Based on your data what was the average of the first 20 time intervals?  Note that you could get this average by averaging the first 20 intervals.  My first few intervals were .15625, .15625, .1875, .171875, etc; I could just add up the first 20 intervals and divide by 20 to get the average.  However there is an easier and quicker way to get the result, so use the easier way if you can.

Give your result, number only, in the first line, and starting in the second line explain how you got it.

.533008 I got my answer by looking at the number beside event 20 and dividing it by 20. The program adds up all time intervals at each event.

#$&*

@& The 7 seconds or so between starting the program and your first click was not a time interval between quick clicks. All those intervals were less than .25 seconds; they could not average .53 seconds.

This will need to be corrected. Fortunately it will be easy to correct.*@

When I did this activity the first few lines of my data were as follows:

event number

clock time

time interval

1

11.67188

11.67188

2

11.875

0.203125

3

12.0625

0.1875

4

12.20313

0.140625

5

12.375

0.171875

6

12.54688

0.171875

7

12.73438

0.1875

8

12.92188

0.1875

9

13.10938

0.1875

10

13.28125

0.171875

11

13.4375

0.15625

It looks like the same intervals keep popping up.  For example .1875 seconds occurs 5 times out of the first 10 intervals, .171875 seconds occurs three times, and .203125 seconds, .140625 seconds and .15625 seconds each occur once.

A frequency distribution for my time intervals would be as follows:

time interval

frequency

,140625

1

.15625

1

.171875

3

.1875

5

.203125

1

What different time intervals did you observe in your first 20 intervals, and how many times did each occur?  List below the different time intervals you observed and the number of times each occurred.  List from the shortest to the longest interval, and use a comma between the time interval and its frequency.  For example my data above would be listed at

.140625, 1

.1565, 1

.171875, 3

.1875, 5

.203125, 1

Your list should be in exactly this format, with no other symbols or characters.

.203125, 1

.1875, 1

.171875, 8

.15625, 5

.140625, 4

 

#$&*

You may make any comments or ask any question about the process so far in the box below

 

 

#$&*

On the 10 intervals I've shown you, do you really think I managed to get a time of .1875 seconds, accurate to 4 significant figures, on half of the intervals?  If you do, I'm grateful for your confidence but I'm just not that good.  No human being has that much neurological and muscular control.

So why do you think the TIMER program reported that time so frequently?  Why weren't there times like .1830 seconds, or .1769 seconds?  Does this mean that the TIMER program is flawed?  Does that mean it's useless?

 The timer program is only accurate to a certain point. It had some round off error. While that is the case, the program still can be useful for a purpose where someone does not need to be extremely accurate.

 

#$&*

Here are a few more lines of data, with an added column showing the difference between each time interval and the next.

clock time

time interval

difference from one time interval to next

9

13.10938

0.1875

-0.01563

10

13.28125

0.171875

-0.01563

11

13.4375

0.15625

0.03125

12

13.625

0.1875

-0.01563

13

13.79688

0.171875

0.015625

14

13.98438

0.1875

0.015625

15

14.1875

0.203125

-0.03125

16

14.35938

0.171875

-0.01563

17

14.51563

0.15625

0.03125

Take a good look at that last column and tell us what you see in those numbers, and what this tells you about the TIMER program

 I noticed a negative sign in some of the time intervals.

 

#$&*

Now initialize the TIMER once more, and take a series of 10 relaxed breaths.  Every time you start to inhale, hit the TIMER button.

My results for the first 7 complete breaths are as follows:

series of relaxed breaths

 

event number

clock time

time interval

difference between time interval and next

1

1569.734

1569.734

 

2

1582.75

13.01563

0.32812

3

1596.094

13.34375

3.90625

4

1613.344

17.25

2.70313

5

1633.297

19.95313

1.35937

6

1654.609

21.3125

4.23438

7

1680.156

25.54688

2.15625

8

1707.859

27.70313

 

I didn't go on because the time between my breaths kept increasing, and I was afraid if I relaxed any more I might stop breathing altogether.  It's going to take either more statistical analysis to determine whether that's a real danger, or a little common sense.

Report your results by just entering your time intervals, one to each line, in the box below.  If I was entering my results I would enter

13.01563

13.34375

17.25

19.95313

21.3125

etc.

Enter your results in the same format:

 5.65625

5.75

5.878906

5.867188

4.140625

7.109375

5.550781

6.53125

5.421875

5.40625

#$&*

If you have any comments please insert them here

 

 

#$&*

Most likely you did not observe the same exact time interval twice, and if you did it did not happen nearly as often as when you did the fact clicks.

Why do you think this is exactly what we would expect?

 The program can measure a longer amount of time more accurately.

 

#$&*

Which of the following statements do you think is the most accurate?

a.  The TIMER program is capable of determining the time between two events accurately to within about .1 second.

b.  The TIMER program is capable of determining the time between two events accurately to within about .01 second.

c.  The TIMER program is capable of determining the time between two events accurately to within about .001 second.

d.  The TIMER program is capable of determining the time between two events accurately to within about .0001 second.

Enter your answer and your reasoning below:

 d.  The TIMER program is capable of determining the time between two events accurately to within about .0001 second.

 

#$&*

*#&!

@& You don't appear to have answered this last question.*@

@&

Good. However you will need to make one simple correction. See my note.

&#Please see my notes and, unless my notes indicate that revision is optional, submit a copy of this document with revisions and/or questions, and mark your insertions with &&&& (please mark each insertion at the beginning and at the end).

Be sure to include the entire document, including my notes.

If my notes indicate that revision is optional, use your own judgement as to whether a revision will benefit you.

&#

*@