#$&* course Mth 152 August 30 around 3:44pm Question: `q001. If you are earning money at the rate of 8 dollars / hour and work for 4 hours, how much money do you make during this time? Answer in such a way as to explain your reasoning as fully as possible. A solution to this problem appears several lines below, but enter your own solution before you look at the given solution.
.............................................
Given Solution: 8 dollars / hour means '8 dollars per hour', indicating that for every hour you work you earn 8 dollars. If you work for 4 hours, then if you earn 8 dollars for every one of those hours you earn 4 * 8 dollars = 32 dollars. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ___________________________ ********************************************* Question: `q002. If you work 12 hours and earn $168, then at what rate, in dollars / hour, were you making money? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: If you worked 12 hours and made a total of $168 the solution to finding out the rate of how you made your money in relation to each hour you worked is to divide. You want to divide $168 by 12, which equals 14. Therefore you were working at a rate of $14 dollars an hour. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: $168 earned in 12 hours implies that $168 / 12 = $14 were made per hour, so the rate is $14 / hour. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ___________________________ Here are the remaining ten questions: ********************************************* Question: `q003. If you are earning 8 dollars / hour, how long will it take you to earn $72? The answer may well be obvious, but explain as best you can how you reasoned out your result. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (type in your solution starting in the next line) If you are earning 8 dollars an hour and the total amount of money you made is $72 you are going to need to do some guess work on how many hours you worked. I would do this by starting with a number I think is a plausible number like 6 and multiply 6, which represents the hour by the 8 dollars you earn per hour. If you go through with this multiplication you get 48 and realize that its two low but you have made yourself a good place to start because you realize the number has to be higher. I happen to know that 8x9=72 though so Im going to skip the rest of the number and jump to 9. Since 8x9=72 which is the amount of dollars you made working for 8 dollars an hour, you can now say that you must of worked 9 hours for 8 dollars an hour which earned you 72 dollars. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Many students simply know, at the level of common sense, that if we divide $72 by $8 / hour we get 9 hours, so 9 hours are required. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ___________________________ ********************************************* Question: `q004. Calculate (8 + 3) * 5 and 8 + 3 * 5, indicating the order of your steps. Explain, as best you can, the reasons for the difference in your results. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (type in your solution starting in the next line) To calculate this answer you have to know and use the order of operations. In the first set we do what is in the parenthesis first, thats the rule. (8+3) = 11 and then we do 11*5, which equals 55. To solve the next set we have to decide between whether we will multiply first or add. The order of operations says we multiply first. We multiply 3x5 which equals 15 and them we add 15 and 8 which equals 23. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: (8 + 3) * 5 and 8 + 3 * 5 To evaluate (8 + 3) * 5, you will first do the calculation in parentheses. 8 + 3 = 11, so (8 + 3) * 5 = 11 * 5 = 55. To evaluate 8 + 3 * 5 you have to decide which operation to do first, 8 + 3 or 3 * 5. You should be familiar with the order of operations, which tells you that multiplication precedes addition. The first calculation to do is therefore 3 * 5, which is equal to 15. Thus 8 + 3 * 5 = 8 + 15 = 23 The results are different because the grouping in the first expression dictates that the addition be done first. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ___________________________ ********************************************* Question: `q005. Calculate (2^4) * 3 and 2^(4 * 3), indicating the order of your steps. Explain, as best you can, the reasons for the difference in your results. Note that the symbol '^' indicates raising to a power. For example, 4^3 means 4 raised to the third power, which is the same as 4 * 4 * 4 = 64. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To solve the problem, (2^4)*3, first we need to find the solution to 2^4 or 2 to the fourth power. We can write this as 2 x 2 x 2 x 2, which equals 16. The next step in solving the equation is to deal with what is now left. We have 16 x 3, which equals 48. The next problem, 2^(4*3), requires us to solve the parenthesis first which is 4 x 3 and equals 12. The equation now reads 2^12 which equals 4096. Is equals 4096 because we multiple 2 to the 12th power. Confidence Rating: 3
.............................................
Given Solution: To evaluate (2^4) * 3 we first evaluate the grouped expression 2^4, which is the fourth power of 2, equal to 2 * 2 * 2 * 2 = 16. So we have (2^4) * 3 = 16 * 3 = 48. To evaluate 2^(4 * 3) we first do the operation inside the parentheses, obtaining 4 * 3 = 12. We therefore get 2^(4 * 3) = 2^12 = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 = 4096. It is easy to multiply by 2, and the powers of 2 are important, so it's appropriate to have asked you to do this problem without using a calculator. Had the exponent been much higher, or had the calculation been, say, 3^12, the calculation would have become tedious and error-prone, and the calculator would have been recommended. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok - a little confused by my own writing when I wrote our my explanation but I went back and hopefully made it more clear. ------------------------------------------------ Self-critique Rating: OK ________________ ********************************************* Question: `q006. Calculate 3 * 5 - 4 * 3 ^ 2 and 3 * 5 - (4 * 3)^2 according to the standard order of operations, indicating the order of your steps. Explain, as best you can, the reasons for the difference in your results. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 3 * 5 - 4 * 3 ^ 2 To solve we work the exponents first. 3^2 = 3 * 3 = 9 The problem now reads as 3*5 - 4*9 We must multiply the sets before we can subtract them. 3*5=15 and 4*9=36 We take the answers of each set and subtract them. 15-36= -21 The answer is negative 21. 3 * 5 - (4 * 3)^2 Parenthesis come first. (4*3) = 12 Exponents next. 12^2 = 144 Finally Multiplication. 3*5 - 15 The problem now reads 15 - 144. 15-144 = -129 Confidence Rating: 3
.............................................
Given Solution: To calculate 3 * 5 - 4 * 3 ^ 2, the first operation is the exponentiation operation ^. The two numbers involved in the exponentiation are 3 and 2; the 4 is 'attached' to the 3 by multiplication, and this multiplication can't be done until the exponentiation has been performed. The exponentiation operation is therefore 3^2 = 9, and the expression becomes 3 * 5 - 4 * 9. Evaluating this expression, the multiplications 3 * 5 and 4 * 9 must be performed before the subtraction. 3 * 5 = 15 and 4 * 9 = 36 so we now have 3 * 5 - 4 * 3 ^ 2 = 3 * 5 - 4 * 9 = 15 - 36 = -21. To calculate 3 * 5 - (4 * 3)^2 we first do the operation in parentheses, obtaining 4 * 3 = 12. Then we apply the exponentiation to get 12 ^2 = 144. Finally we multiply 3 * 5 to get 15. Putting this all together we get 3 * 5 - (4 * 3)^2 = 3 * 5 - 12^2 = 3 * 5 - 144 = 15 - 144 = -129. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK - I like how I explained the problem better than the question before - it was more clear I think. ------------------------------------------------ Self-critique Rating: OK
.............................................
Given Solution: Two slightly different explanations are give below, one by a student and one by the instructor. Neither format is inherently better than the other. GOOD SOLUTION BY STUDENT: First we need to complete the table. I have added a column to the right of the table to show the calculation of y when we us the x values as given. x y Calculation: If y = 2x + 3 -2 -1 If x = -2, then y = 2(-2)+3 = -4+3 = -1 -1 1 If x= -1, then y = 2(-1)+3 = -2+3 = 1 0 3 If x= 0, then y = 2(0)+3 = 0+3 = 3 1 5 If x= 1, then y = 2(1)+3 = 2+3 = 5 2 7 If x= 2, then y = 2(2)+3 = 4+3 = 7 Once an answer has been determined, the y value can be filled in. Now we have both the x and y values and we can begin our graph. The charted values continue on a straight line representing a linear function as shown above. INSTRUCTOR'S SOLUTION: We easily evaluate the expression: When x = -2, we get y = 2 x + 3 = 2 * (-2) + 3 = -4 + 3 = -1. When x = -1, we get y = 2 x + 3 = 2 * (-1) + 3 = -2 + 3 = 1. When x = 0, we get y = 2 x + 3 = 2 * (0) + 3 = 0 + 3 = 3. When x = 1, we get y = 2 x + 3 = 2 * (1) + 3 = 2 + 3 = 5. When x = 2, we get y = 2 x + 3 = 2 * (2) + 3 = 4 + 3 = 7. Filling in the table we have x y -2 -1 -1 1 0 3 1 5 2 7 When we graph these points we find that they lie along a straight line. Only one of the depicted graphs consists of a straight line, and we conclude that the appropriate graph is the one labeled 'linear'. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): (Omitted) ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q008. Let y = x^2 + 3. (Note: Liberal Arts Mathematics students are encouraged to do this problem, but are not required to do it). Evaluate y for x = -2. What is your result? In your solution explain the steps you took to get this result. Evaluate y for x values -1, 0, 1 and 2. Write out a copy of the table below. In your solution give the y values you obtained in your table. x y -2 -1 0 1 2 Sketch a graph of y vs. x on a set of coordinate axes resembling the one shown below. You may of course adjust the scale of the x or the y axis to best depict the shape of your graph. In your solution, describe your graph in words, and indicate which of the graphs depicted previously your graph most resembles. Explain why you chose the graph you did. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (Omitted) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Evaluating y = x^2 + 3 at the five points: If x = -2 then we obtain y = x^2 + 3 = (-2)^2 + 3 = 4 + 3 = 7. If x = -1 then we obtain y = x^2 + 3 = (-1)^2 + 3 = ` + 3 = 4. If x = 0 then we obtain y = x^2 + 3 = (0)^2 + 3 = 0 + 3 = 3. If x = 1 then we obtain y = x^2 + 3 = (1)^2 + 3 = 1 + 3 = 4. If x = 2 then we obtain y = x^2 + 3 = (2)^2 + 3 = 4 + 3 = 7. The table becomes x y -2 7 -1 4 0 3 1 4 2 7 We note that there is a symmetry to the y values. The lowest y value is 3, and whether we move up or down the y column from the value 3, we find the same numbers (i.e., if we move 1 space up from the value 3 the y value is 4, and if we move one space down we again encounter 4; if we move two spaces in either direction from the value 3, we find the value 7). A graph of y vs. x has its lowest point at (0, 3). If we move from this point, 1 unit to the right our graph rises 1 unit, to (1, 4), and if we move 1 unit to the left of our 'low point' the graph rises 1 unit, to (-1, 4). If we move 2 units to the right or the left from our 'low point', the graph rises 4 units, to (2, 7) on the right, and to (-2, 7) on the left. Thus as we move from our 'low point' the graph rises up, becoming increasingly steep, and the behavior is the same whether we move to the left or right of our 'low point'. This reflects the symmetry we observed in the table. So our graph will have a right-left symmetry. Two of the depicted graphs curve upward away from the 'low point'. One is the graph labeled 'quadratic or parabolic'. The other is the graph labeled 'partial graph of degree 3 polynomial'. If we look closely at these graphs, we find that only the first has the right-left symmetry, so the appropriate graph is the 'quadratic or parabolic' graph. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q009. Let y = 2 ^ x + 3. (Note: Liberal Arts Mathematics students are encouraged to do this problem, but are not required to do it). Evaluate y for x = 1. What is your result? In your solution explain the steps you took to get this result. Evaluate y for x values 2, 3 and 4. Write out a copy of the table below. In your solution give the y values you obtained in your table. x y 1 2 3 4 Sketch a graph of y vs. x on a set of coordinate axes resembling the one shown below. You may of course adjust the scale of the x or the y axis to best depict the shape of your graph. In your solution, describe your graph in words, and indicate which of the graphs depicted previously your graph most resembles. Explain why you chose the graph you did. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (Omitted) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Recall that the exponentiation in the expression 2^x + 1 must be done before, not after the addition. When x = 1 we obtain y = 2^1 + 3 = 2 + 3 = 5. When x = 2 we obtain y = 2^2 + 3 = 4 + 3 = 7. When x = 3 we obtain y = 2^3 + 3 = 8 + 3 = 11. When x = 4 we obtain y = 2^4 + 3 = 16 + 3 = 19. x y 1 5 2 7 3 11 4 19 Looking at the numbers in the y column we see that they increase as we go down the column, and that the increases get progressively larger. In fact if we look carefully we see that each increase is double the one before it, with increases of 2, then 4, then 8. When we graph these points we find that the graph rises as we go from left to right, and that it rises faster and faster. From our observations on the table we know that the graph in fact that the rise of the graph doubles with each step we take to the right. The only graph that increases from left to right, getting steeper and steeper with each step, is the graph labeled 'exponential'. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ____________________ ********************************************* Question: `q010. If you divide a certain positive number by 1, is the result greater than the original number, less than the original number or equal to the original number, or does the answer to this question depend on the original number? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Anything divided by 1 is always the original number it was divided with. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: If you divide any number by 1, the result is the same as the original number. Doesn't matter what the original number is, if you divide it by 1, you don't change it. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ____________________ ********************************************* Question: `q011. If you divide a certain positive number by a number greater than 1, is the result greater than the original number, less than the original number or equal to the original number, or does the answer to this question depend on the original number? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The greatest number you divide something by the more parts you get but the less they are. For example if we have 8/1 the answer is 8. It is like we discussed in the problem before, nothing changes, you retain the original number. But if the positive number is greater than 1 like 2, then 8/2 equals the lesser number, 4. The result is always a lesser number. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: If you split something up into equal parts, the more parts you have, the less will be in each one. Dividing a positive number by another number is similar. The bigger the number you divide by, the less you get. Now if you divide a positive number by 1, the result is the same as your original number. So if you divide the positive number by a number greater than 1, what you get has to be smaller than the original number. Again it doesn't matter what the original number is, as long as it's positive. Students will often reason from examples. For instance, the following reasoning might be offered: OK, let's say the original number is 36. Let's divide 36 be a few numbers and see what happens: 36/2 = 18. Now 3 is bigger than 2, and 36 / 3 = 12. The quotient got smaller. Now 4 is bigger than 3, and 36 / 4 = 9. The quotient got smaller again. Let's skip 5 because it doesn't divide evenly into 36. 36 / 6 = 4. Again we divided by a larger number and the quotient was smaller. I'm convinced. That is a pretty convincing argument, mainly because it is so consistent with our previous experience. In that sense it's a good argument. It's also useful, giving us a concrete example of how dividing by bigger and bigger numbers gives us smaller and smaller results. However specific examples, however convincing and however useful, don't actually prove anything. The argument given at the beginning of this solution is general, and applies to all positive numbers, not just the specific positive number chosen here. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I didnt explain this, as much as I should of I believe. #### I believe that in this problem I should have experimented more with dividing a certain number and noting the results then just making assumptions. So we will work with 40. 40/1 = 40 (We divide by one we keep the original number) 40/2 = 20 (We divided 40 into two parts, both parts are still large but still smaller than 40) 40/10 = 4 (We divided by a much larger number and got a very small number. The more parts we make, the larger number we divide by will make the parts that are split in the end a smaller number. We split 40 into 10 parts and each part has 4 parts in it. ------------------------------------------------ Self-critique Rating: OK _____________ ********************************************* Question: `q012. If you divide a certain positive number by a positive number less than 1, is the result greater than the original number, less than the original number or equal to the original number, or does the answer to this question depend on the original number? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: If you take a positive number and split it is only logical that the more parts you have the less each part will equal to be when they are split apart. - If you divide a big number like 30 by 5 you are going to get a smaller number like 6 as your answer. - If you divide 30 by 3 though, you get a larger number as the answer like 10. - But again if you divide 30 by a positive 1, you are going to get the original number you divided by. The answer is 30 it doesnt change. Confidence Rating: 3
.............................................
Given Solution: If you split something up into equal parts, the more parts you have, the less will be in each one. Dividing a positive number by some other number is similar. The bigger the number you divide by, the less you get. The smaller the number you divide by, the more you get. Now if you divide a positive number by 1, the result is the same as your original number. So if you divide the positive number by a positive number less than 1, what you get has to be larger than the original number. Again it doesn't matter what the original number is, as long as it's positive. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK - Is that enough explanation? ------------------------------------------------ Self-critique Rating: OK