course Phy 202 KTL^l|¼}assignment #004
......!!!!!!!!...................................
15:50:44 query introset plug of water from cylinder given gauge pressure, c-s hole area, length of plug. Explain how we can determine the velocity of exiting water, given the pressure difference between inside and outside, by considering a plug of known cross-sectional area and length?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
15:52:11 query introset plug of water from cylinder given gauge pressure, c-s hole area, length of plug. Explain how we can determine the velocity of exiting water, given the pressure difference between inside and outside, by considering a plug of known cross-sectional area and length?
......!!!!!!!!...................................
RESPONSE --> net force on the plug is P * A, A is its cross-sectional area and P the pressure difference If L is the length of the plug then the net force P * A acts thru dist L doing work P * A * L. If init vel is 0 and there are no dissipative forces, this is the kinetic energy attained by the plug. volume of the plug is A * L so its mass is rho * A * L.
.................................................
......!!!!!!!!...................................
15:53:07 ** The net force on the plug is P * A, where A is its cross-sectional area and P the pressure difference. If L is the length of the plug then the net force P * A acts thru dist L doing work P * A * L. If init vel is 0 and there are no dissipative forces, this is the kinetic energy attained by the plug. The volume of the plug is A * L so its mass is rho * A * L. Thus we have mass rho * A * L with KE equal to P * A * L. Setting .5 m v^2 = KE we have .5 rho A L v^2 = P A L so that v = sqrt( 2 P / rho). **
......!!!!!!!!...................................
RESPONSE --> Well i believe i have most of the answer correct i just need to know how to come to the conclusion in order for the net force to act on the pressure.
.................................................
......!!!!!!!!...................................
15:53:15 ** The net force on the plug is P * A, where A is its cross-sectional area and P the pressure difference. If L is the length of the plug then the net force P * A acts thru dist L doing work P * A * L. If init vel is 0 and there are no dissipative forces, this is the kinetic energy attained by the plug. The volume of the plug is A * L so its mass is rho * A * L. Thus we have mass rho * A * L with KE equal to P * A * L. Setting .5 m v^2 = KE we have .5 rho A L v^2 = P A L so that v = sqrt( 2 P / rho). **
......!!!!!!!!...................................
RESPONSE --> k
.................................................
......!!!!!!!!...................................
15:53:24 prin phy problem 10.3. Mass of air in room 4.8 m x 3.8 m x 2.8 m.
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
15:54:40 prin phy problem 10.3. Mass of air in room 4.8 m x 3.8 m x 2.8 m.
......!!!!!!!!...................................
RESPONSE --> The density of air at common atmospheric temperature and pressure it about 1.3 kg / m^3. The volume of the room is 4.8 m * 3.8 m * 2.8 m = 51 m^3, . mass = density * volume = 1.3 kg / m^3 * 51 m^3 = 66 kg, approximately. This is a medium-sized room, and the mass is close to the average mass of a medium-sized person.
.................................................
......!!!!!!!!...................................
15:55:00 The density of air at common atmospheric temperature and pressure it about 1.3 kg / m^3. The volume of the room is 4.8 m * 3.8 m * 2.8 m = 51 m^3, approximately. The mass of the air in this room is therefore mass = density * volume = 1.3 kg / m^3 * 51 m^3 = 66 kg, approximately. This is a medium-sized room, and the mass is close to the average mass of a medium-sized person.
......!!!!!!!!...................................
RESPONSE --> I did pretty well on that one
.................................................
......!!!!!!!!...................................
15:55:09 The density of air at common atmospheric temperature and pressure it about 1.3 kg / m^3. The volume of the room is 4.8 m * 3.8 m * 2.8 m = 51 m^3, approximately. The mass of the air in this room is therefore mass = density * volume = 1.3 kg / m^3 * 51 m^3 = 66 kg, approximately. This is a medium-sized room, and the mass is close to the average mass of a medium-sized person.
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
15:56:47 prin phy problem 10.8. Difference in blood pressure between head and feet of 1.60 m tell person.
......!!!!!!!!...................................
RESPONSE --> I am not real sure on how to start up this problem?? I need some information that I really don't understand.
.................................................
......!!!!!!!!...................................
15:57:36 The density of blood is close to that of water, 1000 kg / m^3. So the pressure difference corresponding to a height difference of 1.6 m is pressure difference = rho g h = 1000 kg/m^3 * 9.80 m/s^2 * 1.60 m = 15600 kg / ( m s^2) = 15600 (kg m / s^2) / m^2 = 15600 N / m^2, or 15600 Pascals. 1 mm of mercury is 133 Pascals, so 15,600 Pa = 15,600 Pa * ( 1 mm of Hg / 133 Pa) = 117 mm of mercury. Blood pressures are measured in mm of mercury; e.g. a blood pressure of 120 / 70 stands for a systolic pressure of 120 mm of mercury and a diastolic pressure of 70 mm of mercury.
......!!!!!!!!...................................
RESPONSE --> I know understand that the blood is close to water and the pressure is corresponding to teh height difference.
.................................................
......!!!!!!!!...................................
15:57:46 The density of blood is close to that of water, 1000 kg / m^3. So the pressure difference corresponding to a height difference of 1.6 m is pressure difference = rho g h = 1000 kg/m^3 * 9.80 m/s^2 * 1.60 m = 15600 kg / ( m s^2) = 15600 (kg m / s^2) / m^2 = 15600 N / m^2, or 15600 Pascals. 1 mm of mercury is 133 Pascals, so 15,600 Pa = 15,600 Pa * ( 1 mm of Hg / 133 Pa) = 117 mm of mercury. Blood pressures are measured in mm of mercury; e.g. a blood pressure of 120 / 70 stands for a systolic pressure of 120 mm of mercury and a diastolic pressure of 70 mm of mercury.
......!!!!!!!!...................................
RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. Always critique your solutions by describing any insights you had or errors you makde, and by explaining how you can make use of the insight or how you now know how to avoid certain errors. Also pose for the instructor any question or questions that you have related to the problem or series of problems. ok
.................................................
......!!!!!!!!...................................
15:57:46 The density of blood is close to that of water, 1000 kg / m^3. So the pressure difference corresponding to a height difference of 1.6 m is pressure difference = rho g h = 1000 kg/m^3 * 9.80 m/s^2 * 1.60 m = 15600 kg / ( m s^2) = 15600 (kg m / s^2) / m^2 = 15600 N / m^2, or 15600 Pascals. 1 mm of mercury is 133 Pascals, so 15,600 Pa = 15,600 Pa * ( 1 mm of Hg / 133 Pa) = 117 mm of mercury. Blood pressures are measured in mm of mercury; e.g. a blood pressure of 120 / 70 stands for a systolic pressure of 120 mm of mercury and a diastolic pressure of 70 mm of mercury.
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
15:58:02 prin phy and gen phy 10.25 spherical balloon rad 7.35 m total mass 930 kg, Helium => what buoyant force
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:02:07 prin phy and gen phy 10.25 spherical balloon rad 7.35 m total mass 930 kg, Helium => what buoyant force
......!!!!!!!!...................................
RESPONSE --> 4/3 pi r^3 = 1660 cubic meters and mass of air is 1.3 kg / m^3 * 1660 m^3 = 2160 kg 2160 kg * 9.8 m/s^2 = 20500 Newtons. buoyant force - weight = 20,500 N - 9100 N = 11,400 N 11,400 N - 2900 N = 8500 N approx.
.................................................
......!!!!!!!!...................................
16:02:53 ** The volume of the balloon is about 4/3 pi r^3 = 1660 cubic meters and mass of air displaced is about 1.3 kg / m^3 * 1660 m^3 = 2160 kg. The buoyant force is equal in magnitude to the force of gravity on the displaced air, or about 2160 kg * 9.8 m/s^2 = 20500 Newtons, approx.. If the total mass of the balloon, including helium, is 930 kg then the net force is about buoyant force - weight = 20,500 N - 9100 N = 11,400 N If the 930 kg doesn't include the helium we have to account also for the force of gravity on its mass. At about .18 kg/m^3 the 1660 m^3 of helium will have mass about 300 kg on which gravity exerts an approximate force of 2900 N, so the net force on the balloon would be around 11,400 N - 2900 N = 8500 N approx. The mass that can be supported by this force is m = F / g = 8500 N / (9.8 m/s^2) = 870 kg, approx.. **
......!!!!!!!!...................................
RESPONSE --> Well i think that i understood the question for the most part i will re-work it to make sure that i have the corrrect answer.
.................................................
......!!!!!!!!...................................
16:03:01 ** The volume of the balloon is about 4/3 pi r^3 = 1660 cubic meters and mass of air displaced is about 1.3 kg / m^3 * 1660 m^3 = 2160 kg. The buoyant force is equal in magnitude to the force of gravity on the displaced air, or about 2160 kg * 9.8 m/s^2 = 20500 Newtons, approx.. If the total mass of the balloon, including helium, is 930 kg then the net force is about buoyant force - weight = 20,500 N - 9100 N = 11,400 N If the 930 kg doesn't include the helium we have to account also for the force of gravity on its mass. At about .18 kg/m^3 the 1660 m^3 of helium will have mass about 300 kg on which gravity exerts an approximate force of 2900 N, so the net force on the balloon would be around 11,400 N - 2900 N = 8500 N approx. The mass that can be supported by this force is m = F / g = 8500 N / (9.8 m/s^2) = 870 kg, approx.. **
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
16:03:08 univ 14.51 (14.55 10th edition) U tube with Hg, 15 cm water added, pressure at interface, vert separation of top of water and top of Hg where exposed to atmosphere. Give your solution to this problem.
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:03:32 univ 14.51 (14.55 10th edition) U tube with Hg, 15 cm water added, pressure at interface, vert separation of top of water and top of Hg where exposed to atmosphere. Give your solution to this problem.
......!!!!!!!!...................................
RESPONSE --> I have no idea on where to begin on taht problem
.................................................
......!!!!!!!!...................................
16:04:10 ** At the interface the pressure is that of the atmosphere plus 15 cm of water, or 1 atm + 1000 kg/m^3 * 9.8 m/s^2 * .15 m = 1 atm + 1470 Pa. The 15 cm of water above the water-mercury interface must be balanced by the mercury above this level on the other side. Since mercury is 13.6 times denser than water there must therefore be 15 cm / (13.6) = 1.1 cm of mercury above this level on the other side. This leaves the top of the water column at 15 cm - 1.1 cm = 13.9 cm above the mercury-air interface. } Here's an alternative solution using Bernoulli's equation, somewhat more rigorous and giving a broader context to the solution: Comparing the interface between mercury and atmosphere with the interface between mercury and water we see that the pressure difference is 1470 Pa. Since velocity is zero we have P1 + rho g y1 = P2 + rho g y2, or rho g (y1 - y2) = P2 - P1 = 1470 Pa. Thus altitude difference between these two points is y1 - y2 = 1470 Pa / (rho g) = 1470 Pa / (13600 kg/m^2 * 9.8 m/s^2) = .011 m approx. or about 1.1 cm. The top of the mercury column exposed to air is thus 1.1 cm higher than the water-mercury interface. Since there are 15 cm of water above this interface the top of the water column is 15 cm - 1.1 cm = 13.9 cm higher than the top of the mercury column. NOTE BRIEF SOLN BY STUDENT: Using Bernoullis Equation we come to: 'rho*g*y1='rho*g*y2 1*10^3*9.8*.15 =13.6*10^3*9.8*y2 y2=.011 m h=y1-y2 h=.15-.011=.139m h=13.9cm. **
......!!!!!!!!...................................
RESPONSE --> i looked thngs over on this problem and honestly it is just a bunch of mumbo jumbo. very hard for me to understand.
.................................................
Jܖ~օ]| assignment #005 KTL^l|¼} Physics II 06-12-2006 xΞ{TȐWʟ assignment #005 KTL^l|¼} Physics II 06-12-2006
......!!!!!!!!...................................
16:05:42 query introset change in pressure from velocity change. Explain how to get the change in fluid pressure given the change in fluid velocity, assuming constant altitude
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:07:54 query introset change in pressure from velocity change. Explain how to get the change in fluid pressure given the change in fluid velocity, assuming constant altitude
......!!!!!!!!...................................
RESPONSE --> use Bernoulli's Equation (rho*gy)+(0.5*rho*v^2)+(P) = 0 altitude h is constant, the two quantities .5 rho v^2 and P are the only things that can change. The sum 1/2 `rho v^2 + P must remain constant. Since fluid velocity v changes, it therefore follows that P must change by a quantity equal and opposite to the change in 1/2 `rho v^2.
.................................................
......!!!!!!!!...................................
16:08:06 ** The equation for this situation is Bernoulli's Equation, which as you note is a modified KE+PE equation. Considering ideal conditions with no losses (rho*gy)+(0.5*rho*v^2)+(P) = 0 g= acceleration due to gravity y=altitude rho=density of fluid }v=velocity P= pressure Constant altitude causes the first term to go to 0 and dissapear. (0.5*rho*v^2)+(P) = constant So here is where we are: Since the altitude h is constant, the two quantities .5 rho v^2 and P are the only things that can change. The sum 1/2 `rho v^2 + P must remain constant. Since fluid velocity v changes, it therefore follows that P must change by a quantity equal and opposite to the change in 1/2 `rho v^2. MORE FORMAL SOLUTION: More formally we could write }1/2 `rho v1^2 + P1 = 1/2 `rho v2^2 + P2 and rearrange to see that the change in pressure, P2 - P1, must be equal to the change 1/2 `rho v2^2 - 1/2 `rho v1^2 in .5 rho v^2: P2 - P1 = 1/2 `rho v2^2 - 1/2 `rho v1^2 = 1/2 rho (v2^2 - v1^2). **
......!!!!!!!!...................................
RESPONSE --> did well on that one
.................................................
......!!!!!!!!...................................
16:08:15 ** The equation for this situation is Bernoulli's Equation, which as you note is a modified KE+PE equation. Considering ideal conditions with no losses (rho*gy)+(0.5*rho*v^2)+(P) = 0 g= acceleration due to gravity y=altitude rho=density of fluid }v=velocity P= pressure Constant altitude causes the first term to go to 0 and dissapear. (0.5*rho*v^2)+(P) = constant So here is where we are: Since the altitude h is constant, the two quantities .5 rho v^2 and P are the only things that can change. The sum 1/2 `rho v^2 + P must remain constant. Since fluid velocity v changes, it therefore follows that P must change by a quantity equal and opposite to the change in 1/2 `rho v^2. MORE FORMAL SOLUTION: More formally we could write }1/2 `rho v1^2 + P1 = 1/2 `rho v2^2 + P2 and rearrange to see that the change in pressure, P2 - P1, must be equal to the change 1/2 `rho v2^2 - 1/2 `rho v1^2 in .5 rho v^2: P2 - P1 = 1/2 `rho v2^2 - 1/2 `rho v1^2 = 1/2 rho (v2^2 - v1^2). **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:08:22 query billiard experiment Do you think that on the average there is a significant difference between the total KE in the x direction and that in the y direction? Support your answer.
......!!!!!!!!...................................
RESPONSE --> no
.................................................
......!!!!!!!!...................................
16:09:28 query billiard experiment Do you think that on the average there is a significant difference between the total KE in the x direction and that in the y direction? Support your answer.
......!!!!!!!!...................................
RESPONSE --> almost every case the average of 30 KE readings in the x and in the y direction differs between the two directions by less than 10% of either KE. This difference is not statistically significant, so I would conclude that the total KE is same in both directions.
.................................................
......!!!!!!!!...................................
16:09:35 ** In almost every case the average of 30 KE readings in the x and in the y direction differs between the two directions by less than 10% of either KE. This difference is not statistically significant, so we conclude that the total KE is statistically the same in bot directions. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:09:43 ** In almost every case the average of 30 KE readings in the x and in the y direction differs between the two directions by less than 10% of either KE. This difference is not statistically significant, so we conclude that the total KE is statistically the same in bot directions. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:09:48 What do you think are the average velocities of the 'red' and the 'blue' particles and what do you think it is about the 'blue' particle that makes is so?
......!!!!!!!!...................................
RESPONSE --> don't know
.................................................
......!!!!!!!!...................................
16:11:01 What do you think are the average velocities of the 'red' and the 'blue' particles and what do you think it is about the 'blue' particle that makes is so?
......!!!!!!!!...................................
RESPONSE --> more mass on the blue particle with a high velocity impact from other particles and the red were much faster.
.................................................
......!!!!!!!!...................................
16:11:07 ** Student answer with good analogy: I did not actually measure the velocities. the red were much faster. I would assume that the blue particle has much more mass a high velocity impact from the other particles made very little change in the blue particles velocity. Similar to a bycycle running into a Mack Truck. INSTRUCTOR NOTE: : It turns out that average kinetic energies of red and blue particles are equal, but the greater mass of the blue particle implies that it needs less v to get the same KE (which is .5 mv^2) **
......!!!!!!!!...................................
RESPONSE --> got it
.................................................
......!!!!!!!!...................................
16:11:21 ** Student answer with good analogy: I did not actually measure the velocities. the red were much faster. I would assume that the blue particle has much more mass a high velocity impact from the other particles made very little change in the blue particles velocity. Similar to a bycycle running into a Mack Truck. INSTRUCTOR NOTE: : It turns out that average kinetic energies of red and blue particles are equal, but the greater mass of the blue particle implies that it needs less v to get the same KE (which is .5 mv^2) **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:11:26 What do you think is the most likely velocity of the 'red' particle?
......!!!!!!!!...................................
RESPONSE --> nothign
.................................................
......!!!!!!!!...................................
16:11:49 What do you think is the most likely velocity of the 'red' particle?
......!!!!!!!!...................................
RESPONSE --> average around 4 or 6
.................................................
......!!!!!!!!...................................
16:11:54 ** If you watch the velocity display you will see that the red particles seem to average somewhere around 4 or 5 **
......!!!!!!!!...................................
RESPONSE --> close
.................................................
......!!!!!!!!...................................
16:12:01 ** If you watch the velocity display you will see that the red particles seem to average somewhere around 4 or 5 **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:12:08 If the simulation had 100 particles, how long do you think you would have to watch the simulation before a screen with all the particles on the left-hand side of the screen would occur?
......!!!!!!!!...................................
RESPONSE --> wow
.................................................
......!!!!!!!!...................................
16:13:29 If the simulation had 100 particles, how long do you think you would have to watch the simulation before a screen with all the particles on the left-hand side of the screen would occur?
......!!!!!!!!...................................
RESPONSE --> I believe that it would be a rare or very unlikely event. probably wouldn't ever see all teh particles never ever.
.................................................
......!!!!!!!!...................................
16:13:36 ** STUDENT ANSWER: Considering the random motion at various angles of impact.It would likely be a very rare event. INSTRUCTOR COMMENT This question requires a little fundamental probability but isn't too difficult to understand: If particle position is regarded as random the probability of a particle being on one given side of the screen is 1/2. The probability of 2 particles both being on a given side is 1/2 * 1/2. For 3 particles the probability is 1/2 * 1/2 * 1/2 = 1/8. For 100 particlles the probability is 1 / 2^100, meaning that you would expect to see this phenomenon once in 2^100 screens. If you saw 10 screens per second this would take about 4 * 10^21 years, or just about a trillion times the age of the Earth. In practical terms, then, you just wouldn't expect to see it, ever. **
......!!!!!!!!...................................
RESPONSE --> alrighty
.................................................
......!!!!!!!!...................................
16:13:47 ** STUDENT ANSWER: Considering the random motion at various angles of impact.It would likely be a very rare event. INSTRUCTOR COMMENT This question requires a little fundamental probability but isn't too difficult to understand: If particle position is regarded as random the probability of a particle being on one given side of the screen is 1/2. The probability of 2 particles both being on a given side is 1/2 * 1/2. For 3 particles the probability is 1/2 * 1/2 * 1/2 = 1/8. For 100 particlles the probability is 1 / 2^100, meaning that you would expect to see this phenomenon once in 2^100 screens. If you saw 10 screens per second this would take about 4 * 10^21 years, or just about a trillion times the age of the Earth. In practical terms, then, you just wouldn't expect to see it, ever. **
......!!!!!!!!...................................
RESPONSE --> k
.................................................
......!!!!!!!!...................................
16:13:52 What do you think the graphs at the right of the screen might represent?
......!!!!!!!!...................................
RESPONSE --> don't know
.................................................
......!!!!!!!!...................................
16:15:24 What do you think the graphs at the right of the screen might represent?
......!!!!!!!!...................................
RESPONSE --> One is histogram showing relative occurences of different velocities. With midrange tending toward the low end. The other the same things but energies and not velocities.
.................................................
......!!!!!!!!...................................
16:15:36 ** One graph is a histogram showing the relative occurrences of different velocities. Highest and lowest velocities are least likely, midrange tending toward the low end most likely. Another shows the same thing but for energies rather than velocities. **
......!!!!!!!!...................................
RESPONSE --> I did good on that one.
.................................................
......!!!!!!!!...................................
16:15:43 ** One graph is a histogram showing the relative occurrences of different velocities. Highest and lowest velocities are least likely, midrange tending toward the low end most likely. Another shows the same thing but for energies rather than velocities. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:15:47 prin phy and gen phy problem 10.36 15 cm radius duct replentishes air in 9.2 m x 5.0 m x 4.5 m room every 16 minutes; how fast is air flowing in the duct?
......!!!!!!!!...................................
RESPONSE --> hhk
.................................................
......!!!!!!!!...................................
16:23:19 prin phy and gen phy problem 10.36 15 cm radius duct replentishes air in 9.2 m x 5.0 m x 4.5 m room every 16 minutes; how fast is air flowing in the duct?
......!!!!!!!!...................................
RESPONSE --> The volume of the room is 9.2 m * 5.0 m * 4.5 m = 210 m^3. This air is replentished every 16 minutes, or at a rate of 210 m^3 / (16 min * 60 sec/min) = 210 m^3 / (960 sec) = .22 m^3 / second. The cross-sectional area of the duct is pi r^2 = pi * (.15 m)^2 = .071 m^2. The speed of the air flow and the velocity of the air flow are related by rate of volume flow = cross-sectional area * speed of flow, so speed of flow = rate of volume flow / cross-sectional area = .22 m^3 / s / (.071 m^2) = 3.1 m/s,
.................................................
......!!!!!!!!...................................
16:23:26 The volume of the room is 9.2 m * 5.0 m * 4.5 m = 210 m^3. This air is replentished every 16 minutes, or at a rate of 210 m^3 / (16 min * 60 sec/min) = 210 m^3 / (960 sec) = .22 m^3 / second. The cross-sectional area of the duct is pi r^2 = pi * (.15 m)^2 = .071 m^2. The speed of the air flow and the velocity of the air flow are related by rate of volume flow = cross-sectional area * speed of flow, so speed of flow = rate of volume flow / cross-sectional area = .22 m^3 / s / (.071 m^2) = 3.1 m/s, approx.
......!!!!!!!!...................................
RESPONSE --> got it
.................................................
......!!!!!!!!...................................
16:23:40 The volume of the room is 9.2 m * 5.0 m * 4.5 m = 210 m^3. This air is replentished every 16 minutes, or at a rate of 210 m^3 / (16 min * 60 sec/min) = 210 m^3 / (960 sec) = .22 m^3 / second. The cross-sectional area of the duct is pi r^2 = pi * (.15 m)^2 = .071 m^2. The speed of the air flow and the velocity of the air flow are related by rate of volume flow = cross-sectional area * speed of flow, so speed of flow = rate of volume flow / cross-sectional area = .22 m^3 / s / (.071 m^2) = 3.1 m/s, approx.
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:23:46 prin phy and gen phy problem 10.40 gauge pressure to maintain firehose stream altitude 15 m ......!!!!!!!!...................................
......!!!!!!!!...................................
RESPONSE --> git
.................................................
......!!!!!!!!...................................
16:26:19 prin phy and gen phy problem 10.40 gauge pressure to maintain firehose stream altitude 15 m ......!!!!!!!!...................................
......!!!!!!!!...................................
RESPONSE --> Use Bernoulli's equation change in rho g h from inside the hose to 15 m height: `d(rho g h) = 1000 kg/m^3 * 9.8 m/s^2 * 15 m = 147,000 N / m^2 The hose must be then 147,000 N/m^2 higher.
.................................................
......!!!!!!!!...................................
16:27:02 ** We use Bernoulli's equation. Between the water in the hose before it narrows to the nozzle and the 15m altitude there is a vertical change in position of 15 m. Between the water in the hose before it narrows to the nozzle and the 15 m altitude there is a vertical change in position of 15 m. Assuming the water doesn't move all that fast before the nozzle narrows the flow, and noting that the water at the top of the stream has finally stopped moving for an instant before falling back down, we see that we know the two vertical positions and the velocities (both zero, or very nearly so) at the two points. All that is left is to calculate the pressure difference. The pressure of the water after its exit is simply atmospheric pressure, so it is fairly straightforward to calculate the pressure inside the hose using Bernoulli's equation. Assuming negligible velocity inside the hose we have change in rho g h from inside the hose to 15 m height: `d(rho g h) = 1000 kg/m^3 * 9.8 m/s^2 * 15 m = 147,000 N / m^2, approx. Noting that the velocity term .5 `rho v^2 is zero at both points, the change in pressure is `dP = - `d(rho g h) = -147,000 N/m^2. Since the pressure at the 15 m height is atmospheric, the pressure inside the hose must be 147,000 N/m^2 higher than atmospheric. **
......!!!!!!!!...................................
RESPONSE --> I worked through the problem the best way I knew how in order to get the correct answer.
.................................................
......!!!!!!!!...................................
16:27:10 ** We use Bernoulli's equation. Between the water in the hose before it narrows to the nozzle and the 15m altitude there is a vertical change in position of 15 m. Between the water in the hose before it narrows to the nozzle and the 15 m altitude there is a vertical change in position of 15 m. Assuming the water doesn't move all that fast before the nozzle narrows the flow, and noting that the water at the top of the stream has finally stopped moving for an instant before falling back down, we see that we know the two vertical positions and the velocities (both zero, or very nearly so) at the two points. All that is left is to calculate the pressure difference. The pressure of the water after its exit is simply atmospheric pressure, so it is fairly straightforward to calculate the pressure inside the hose using Bernoulli's equation. Assuming negligible velocity inside the hose we have change in rho g h from inside the hose to 15 m height: `d(rho g h) = 1000 kg/m^3 * 9.8 m/s^2 * 15 m = 147,000 N / m^2, approx. Noting that the velocity term .5 `rho v^2 is zero at both points, the change in pressure is `dP = - `d(rho g h) = -147,000 N/m^2. Since the pressure at the 15 m height is atmospheric, the pressure inside the hose must be 147,000 N/m^2 higher than atmospheric. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:27:15 Gen phy: Assuming that the water in the hose is moving much more slowly than the exiting water, so that the water in the hose is essentially moving at 0 velocity, what quantity is constant between the inside of the hose and the top of the stream? what term therefore cancels out of Bernoulli's equation?
......!!!!!!!!...................................
RESPONSE --> npo
.................................................
......!!!!!!!!...................................
16:27:33 Gen phy: Assuming that the water in the hose is moving much more slowly than the exiting water, so that the water in the hose is essentially moving at 0 velocity, what quantity is constant between the inside of the hose and the top of the stream? what term therefore cancels out of Bernoulli's equation?
......!!!!!!!!...................................
RESPONSE --> Velocity is 0 at top and bottom; pressure at top is atmospheric, and if pressure in the hose was the same the water wouldn't experience any net force and would therefore remain in the hose
.................................................
......!!!!!!!!...................................
16:27:39 ** Velocity is 0 at top and bottom; pressure at top is atmospheric, and if pressure in the hose was the same the water wouldn't experience any net force and would therefore remain in the hose **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:27:45 ** Velocity is 0 at top and bottom; pressure at top is atmospheric, and if pressure in the hose was the same the water wouldn't experience any net force and would therefore remain in the hose **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:27:50 query gen phy problem 10.43 net force on 240m^2 roof from 35 m/s wind. What is the net force on the roof?
......!!!!!!!!...................................
RESPONSE --> gou
.................................................
......!!!!!!!!...................................
16:28:51 query gen phy problem 10.43 net force on 240m^2 roof from 35 m/s wind. What is the net force on the roof?
......!!!!!!!!...................................
RESPONSE --> On one side v = 0, on the other v = 35 m/s, so the difference in .5 rho v^2 from inside to out is d(.5 rho v^2) = 0.5(1.29kg/m^3)*(35m/s)^2 - 0 = 790 N/m^2 d(.5 rho v^2) = 0.5(1.29kg/m^3)*(35m/s)^2 - 0 = 790 N/m^2 associated force is 790 N/m^2 * 240 m^2 = 190,000
.................................................
......!!!!!!!!...................................
16:29:00 ** air with density around 1.29 kg/m^3 moves with one velocity above the roof and essentially of 0 velocity below the roof. Thus there is a difference between the two sides of Bernoulli's equation in the quantity 1/2 `rho v^2. At the density of air `rho g h isn't going to amount to anything significant between the inside and outside of the roof. So the difference in pressure is equal and opposite to the change in 1/2 `rho v^2. On one side v = 0, on the other v = 35 m/s, so the difference in .5 rho v^2 from inside to out is `d(.5 rho v^2) = 0.5(1.29kg/m^3)*(35m/s)^2 - 0 = 790 N/m^2. The difference in the altitude term is, as mentioned above, negligible so the difference in pressure from inside to out is `dP = - `d(.5 rho v^2) = -790 N/m^2. } The associated force is 790 N/m^2 * 240 m^2 = 190,000 N, approx. **
......!!!!!!!!...................................
RESPONSE --> alrighty
.................................................
......!!!!!!!!...................................
16:29:10 ** air with density around 1.29 kg/m^3 moves with one velocity above the roof and essentially of 0 velocity below the roof. Thus there is a difference between the two sides of Bernoulli's equation in the quantity 1/2 `rho v^2. At the density of air `rho g h isn't going to amount to anything significant between the inside and outside of the roof. So the difference in pressure is equal and opposite to the change in 1/2 `rho v^2. On one side v = 0, on the other v = 35 m/s, so the difference in .5 rho v^2 from inside to out is `d(.5 rho v^2) = 0.5(1.29kg/m^3)*(35m/s)^2 - 0 = 790 N/m^2. The difference in the altitude term is, as mentioned above, negligible so the difference in pressure from inside to out is `dP = - `d(.5 rho v^2) = -790 N/m^2. } The associated force is 790 N/m^2 * 240 m^2 = 190,000 N, approx. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:29:15 gen phy which term cancels out of Bernoulli's equation and why?
......!!!!!!!!...................................
RESPONSE --> jaflsd
.................................................
......!!!!!!!!...................................
16:29:45 gen phy which term cancels out of Bernoulli's equation and why?
......!!!!!!!!...................................
RESPONSE --> b/c the small density of air and the small change in y, `rho g y exhibits practically no change
.................................................
......!!!!!!!!...................................
16:29:50 ** because of the small density of air and the small change in y, `rho g y exhibits practically no change. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:30:09 univ phy problem 14.67: prove that if weight in water if f w then density of gold is 1 / (1-f). Meaning as f -> 0, 1, infinity. Weight of gold in water if 12.9 N in air. What if nearly all lead and 12.9 N in air?
......!!!!!!!!...................................
RESPONSE --> Cannot understand that problem at all.
.................................................
......!!!!!!!!...................................
16:30:12 ** because of the small density of air and the small change in y, `rho g y exhibits practically no change. **
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
16:30:18 univ phy problem 14.67: prove that if weight in water if f w then density of gold is 1 / (1-f). Meaning as f -> 0, 1, infinity. Weight of gold in water if 12.9 N in air. What if nearly all lead and 12.9 N in air?
......!!!!!!!!...................................
RESPONSE --> ook
.................................................
......!!!!!!!!...................................
16:30:57 ** The tension in the rope supporting the crown in water is T = f w. Tension and buoyant force are equal and opposite to the force of gravity so T + dw * vol = w or f * dg * vol + dw * vol = dg * vol. Dividing through by vol we have f * dg + dw = dg, which we solve for dg to obtain dg = dw / (1 - f). Relative density is density as a proportion of density of water, so relative density is 1 / (1-f). For gold relative density is 19.3 so we have 1 / (1-f) = 19.3, which we solve for f to obtain f = 18.3 / 19.3. The weight of the 12.9 N gold crown in water will thus be T = f w = 18.3 / 19.3 * 12.9 N = 12.2 N. STUDENT SOLUTION: After drawing a free body diagram we can see that these equations are true: Sum of Fy =m*ay , T+B-w=0, T=fw, B=(density of water)(Volume of crown)(gravity). Then fw+(density of water)(Volume of crown)(gravity)-w=0. (1-f)w=(density of water)(Volume of crown)(gravity). Use w==(density of crown)(Volume of crown)(gravity). (1-f)(density of crown)(Volume of crown)(gravity) =(density of water)(Volume of crown)(gravity). Thus, (density of crown)/(density of water)=1/(1-f). **
......!!!!!!!!...................................
RESPONSE --> alrighty then. I was able to look at the product and understand the logic and reason behind this in order to get the answer.
.................................................
......!!!!!!!!...................................
16:31:04 ** The tension in the rope supporting the crown in water is T = f w. Tension and buoyant force are equal and opposite to the force of gravity so T + dw * vol = w or f * dg * vol + dw * vol = dg * vol. Dividing through by vol we have f * dg + dw = dg, which we solve for dg to obtain dg = dw / (1 - f). Relative density is density as a proportion of density of water, so relative density is 1 / (1-f). For gold relative density is 19.3 so we have 1 / (1-f) = 19.3, which we solve for f to obtain f = 18.3 / 19.3. The weight of the 12.9 N gold crown in water will thus be T = f w = 18.3 / 19.3 * 12.9 N = 12.2 N. STUDENT SOLUTION: After drawing a free body diagram we can see that these equations are true: Sum of Fy =m*ay , T+B-w=0, T=fw, B=(density of water)(Volume of crown)(gravity). Then fw+(density of water)(Volume of crown)(gravity)-w=0. (1-f)w=(density of water)(Volume of crown)(gravity). Use w==(density of crown)(Volume of crown)(gravity). (1-f)(density of crown)(Volume of crown)(gravity) =(density of water)(Volume of crown)(gravity). Thus, (density of crown)/(density of water)=1/(1-f). **
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
16:31:09 univ phy What are the meanings of the limits as f approaches 0 and 1?
......!!!!!!!!...................................
RESPONSE --> k
.................................................
......!!!!!!!!...................................
16:31:48 univ phy What are the meanings of the limits as f approaches 0 and 1?
......!!!!!!!!...................................
RESPONSE --> f-> 0 gives (density of crown)/(density of water) = 1 and T=0. If the density of the crown equals the density of the water, the crown just floats, fully submerged, and the tension should be zero. When f-> 1, density of crown > density of water and T=w. If density of crown > density of water then B is negligible relative to the weight w of the crown and T should equal w.
.................................................
......!!!!!!!!...................................
16:31:59 ** GOOD STUDENT ANSWER: f-> 0 gives (density of crown)/(density of water) = 1 and T=0. If the density of the crown equals the density of the water, the crown just floats, fully submerged, and the tension should be zero. When f-> 1, density of crown >> density of water and T=w. If density of crown >> density of water then B is negligible relative to the weight w of the crown and T should equal w. **
......!!!!!!!!...................................
RESPONSE --> got that one correct
.................................................
i؊JѱέW˄fmJ assignment #006 KTL^l|¼} Physics II 06-12-2006 kV̛{Ò״} assignment #006 KTL^l|¼} Physics II 06-12-2006
......!!!!!!!!...................................
16:43:43 query introset change in pressure from diameter change given original vel and diameter
......!!!!!!!!...................................
RESPONSE --> k
.................................................
......!!!!!!!!...................................
16:45:03 query introset change in pressure from diameter change given original vel and diameter
......!!!!!!!!...................................
RESPONSE --> ratio of velocities is inverse ratio of cross sectional areas. Cross-sectional area is proportional to square of diameter v2 / v1 = (A1 / A2) = (d1 / d2)^2 so v2 = (d1/d2)^2 * v1. Since h presumably remains constant we have P1 + .5 rho v1^2 = P2 + .5 rho v2^2 so (P2 - P1) = 0.5 *rho (v1^2 - v2^2)
.................................................
......!!!!!!!!...................................
16:45:13 ** The ratio of velocities is the inverse ratio of cross-sectional areas. Cross-sectional area is proportional to square of diameter. So velocity is inversely proportional to cross-sectional area: v2 / v1 = (A1 / A2) = (d1 / d2)^2 so v2 = (d1/d2)^2 * v1. Since h presumably remains constant we have P1 + .5 rho v1^2 = P2 + .5 rho v2^2 so (P2 - P1) = 0.5 *rho (v1^2 - v2^2) . **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:45:24 ** The ratio of velocities is the inverse ratio of cross-sectional areas. Cross-sectional area is proportional to square of diameter. So velocity is inversely proportional to cross-sectional area: v2 / v1 = (A1 / A2) = (d1 / d2)^2 so v2 = (d1/d2)^2 * v1. Since h presumably remains constant we have P1 + .5 rho v1^2 = P2 + .5 rho v2^2 so (P2 - P1) = 0.5 *rho (v1^2 - v2^2) . **
......!!!!!!!!...................................
RESPONSE --> k
.................................................
......!!!!!!!!...................................
16:45:29 query video experiment 4 terminal velocity of sphere in fluid. What is the evidence from this experiment that the drag force increases with velocity?
......!!!!!!!!...................................
RESPONSE --> kh
.................................................
......!!!!!!!!...................................
16:46:16 query video experiment 4 terminal velocity of sphere in fluid. What is the evidence from this experiment that the drag force increases with velocity?
......!!!!!!!!...................................
RESPONSE --> When weights were repetitively added the velocity of the sphere repetively increased. As the velocities started to aproach 0.1254 m/sec the added weights had less and less effect on increasing the velocity. I concluded that as the velocity increased so did the drag force of the water.
.................................................
......!!!!!!!!...................................
16:46:35 ** When weights were repetitively added the velocity of the sphere repetively increased. As the velocities started to aproach 0.1254 m/sec the added weights had less and less effect on increasing the velocity. We conclude that as the velocity increased so did the drag force of the water. **
......!!!!!!!!...................................
RESPONSE --> did pretty well on that answer.
.................................................
......!!!!!!!!...................................
16:46:39 ** When weights were repetitively added the velocity of the sphere repetively increased. As the velocities started to aproach 0.1254 m/sec the added weights had less and less effect on increasing the velocity. We conclude that as the velocity increased so did the drag force of the water. **
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
16:46:46 query univ phy problem 14.85 (14.89 10th edition) half-area constriction then open to outflow at dist h1 below reservoir level, tube from lower reservoir into constricted area, same fluid in both. Find ht h2 to which fluid in lower tube rises.
......!!!!!!!!...................................
RESPONSE --> kjoi
.................................................
......!!!!!!!!...................................
16:47:32 query univ phy problem 14.85 (14.89 10th edition) half-area constriction then open to outflow at dist h1 below reservoir level, tube from lower reservoir into constricted area, same fluid in both. Find ht h2 to which fluid in lower tube rises.
......!!!!!!!!...................................
RESPONSE --> I am not sure on exactly how to do this problem so I will critique myself when I see the answer.
.................................................
......!!!!!!!!...................................
16:48:16 ** The fluid exits the narrowed part of the tube at atmospheric pressure. The widened part at the end of the tube is irrelevant--it won't be filled with fluid. So Bernoulli's Equation will tell you that the fluid velocity in this part is vExit such that .5 rho vExit^2 = rho g h1. Now compare three points: point 1, in the narrowed tube; point 2 at the top of the fluid in the lower tube; and point 3 at the level of the fluid surface in the lower container. At point 1 the pressure is atmospheric and velocity is vExit. Pressure is atmospheric because there is no pressure loss within the tube, since friction and viscosity are both assumed negligible. At point 2 fluid velocity is zero and since there is no fluid between the narrowed tube and this point there is no net rho g h contribution to Bernoulli's equation. So we have .5 rho v1^2 + P1 = .5 rho v2^2 + P2. P1 is atmospheric and v1 is vExit from above, while v2 = 0 so P2 = atmospheric pressure + .5 rho vExit^2 = atmospheric pressure + rho g h1. Now comparing point 2 with point 3 we see that there is a difference h in the fluid altitude, with velocity 0 at both points and atmospheric pressure at point 3. Thus P2 + rho g h2 = P3 + rho g h3, or (atmospheric pressure + rho g h1) + rho g h2 = atmospheric pressure + rho g h3. Thus rho g (h3 - h2) = rho g h1 and h3 - h2, which is the height of the fluid in the lower tube, is just equal to h1. If we assume that somehow the fluid manages to expand on escaping the narrowed tube so that it fills the once-again-widened tube, and exits with vExit as above, then the velocity in the narrowed tube will be 2 * vExit. This leads to the conclusion that pressure change from small to large tube is .5 rho (2 vExit)^2 - .5 rho vExit^2 = .5 rho (3 vExit^2). Since pressure is atmospheric in the large tube, pressure in the small tube is atmospheric pressure + 3 ( .5 rho vExit^2). If we use this pressure for point 1 and follow the steps given above we conclude that h3 - h2, the height of the fluid column in the lower tube, is 3 h1. This is the book's answer. Again I don't have the problem in front of me and I might have missed something, but the idea of the fluid expanding to refill the larger pipe doesn't seem consistent with the behavior of even ideal liquids, which are pretty much incompressible at ordinary pressures. However note that I am sometimes wrong when I disagree with the textbook's solution. **
......!!!!!!!!...................................
RESPONSE --> the way I look at this question is that I really had no idea on how to do it, So I looked at the answer and tried to figure out just how to do the work.
.................................................
......!!!!!!!!...................................
16:48:27 ** The fluid exits the narrowed part of the tube at atmospheric pressure. The widened part at the end of the tube is irrelevant--it won't be filled with fluid. So Bernoulli's Equation will tell you that the fluid velocity in this part is vExit such that .5 rho vExit^2 = rho g h1. Now compare three points: point 1, in the narrowed tube; point 2 at the top of the fluid in the lower tube; and point 3 at the level of the fluid surface in the lower container. At point 1 the pressure is atmospheric and velocity is vExit. Pressure is atmospheric because there is no pressure loss within the tube, since friction and viscosity are both assumed negligible. At point 2 fluid velocity is zero and since there is no fluid between the narrowed tube and this point there is no net rho g h contribution to Bernoulli's equation. So we have .5 rho v1^2 + P1 = .5 rho v2^2 + P2. P1 is atmospheric and v1 is vExit from above, while v2 = 0 so P2 = atmospheric pressure + .5 rho vExit^2 = atmospheric pressure + rho g h1. Now comparing point 2 with point 3 we see that there is a difference h in the fluid altitude, with velocity 0 at both points and atmospheric pressure at point 3. Thus P2 + rho g h2 = P3 + rho g h3, or (atmospheric pressure + rho g h1) + rho g h2 = atmospheric pressure + rho g h3. Thus rho g (h3 - h2) = rho g h1 and h3 - h2, which is the height of the fluid in the lower tube, is just equal to h1. If we assume that somehow the fluid manages to expand on escaping the narrowed tube so that it fills the once-again-widened tube, and exits with vExit as above, then the velocity in the narrowed tube will be 2 * vExit. This leads to the conclusion that pressure change from small to large tube is .5 rho (2 vExit)^2 - .5 rho vExit^2 = .5 rho (3 vExit^2). Since pressure is atmospheric in the large tube, pressure in the small tube is atmospheric pressure + 3 ( .5 rho vExit^2). If we use this pressure for point 1 and follow the steps given above we conclude that h3 - h2, the height of the fluid column in the lower tube, is 3 h1. This is the book's answer. Again I don't have the problem in front of me and I might have missed something, but the idea of the fluid expanding to refill the larger pipe doesn't seem consistent with the behavior of even ideal liquids, which are pretty much incompressible at ordinary pressures. However note that I am sometimes wrong when I disagree with the textbook's solution. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:48:59 query univ phy problem 14.85 (14.89 10th edition) half-area constriction then open to outflow at dist h1 below reservoir level, tube from lower reservoir into constricted area, same fluid in both. Find ht h2 to which fluid in lower tube rises.
......!!!!!!!!...................................
RESPONSE --> I think that this is the exact same problem that I just had trouble with.
.................................................
......!!!!!!!!...................................
16:49:05 query univ phy problem 14.85 (14.89 10th edition) half-area constriction then open to outflow at dist h1 below reservoir level, tube from lower reservoir into constricted area, same fluid in both. Find ht h2 to which fluid in lower tube rises.
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:49:14 ** The fluid exits the narrowed part of the tube at atmospheric pressure. The widened part at the end of the tube is irrelevant--it won't be filled with fluid. So Bernoulli's Equation will tell you that the fluid velocity in this part is vExit such that .5 rho vExit^2 = rho g h1. Now compare three points: point 1, in the narrowed tube; point 2 at the top of the fluid in the lower tube; and point 3 at the level of the fluid surface in the lower container. At point 1 the pressure is atmospheric and velocity is vExit. Pressure is atmospheric because there is no pressure loss within the tube, since friction and viscosity are both assumed negligible. At point 2 fluid velocity is zero and since there is no fluid between the narrowed tube and this point there is no net rho g h contribution to Bernoulli's equation. So we have .5 rho v1^2 + P1 = .5 rho v2^2 + P2. P1 is atmospheric and v1 is vExit from above, while v2 = 0 so P2 = atmospheric pressure + .5 rho vExit^2 = atmospheric pressure + rho g h1. Now comparing point 2 with point 3 we see that there is a difference h in the fluid altitude, with velocity 0 at both points and atmospheric pressure at point 3. Thus P2 + rho g h2 = P3 + rho g h3, or (atmospheric pressure + rho g h1) + rho g h2 = atmospheric pressure + rho g h3. Thus rho g (h3 - h2) = rho g h1 and h3 - h2, which is the height of the fluid in the lower tube, is just equal to h1. If we assume that somehow the fluid manages to expand on escaping the narrowed tube so that it fills the once-again-widened tube, and exits with vExit as above, then the velocity in the narrowed tube will be 2 * vExit. This leads to the conclusion that pressure change from small to large tube is .5 rho (2 vExit)^2 - .5 rho vExit^2 = .5 rho (3 vExit^2). Since pressure is atmospheric in the large tube, pressure in the small tube is atmospheric pressure + 3 ( .5 rho vExit^2). If we use this pressure for point 1 and follow the steps given above we conclude that h3 - h2, the height of the fluid column in the lower tube, is 3 h1. This is the book's answer. Again I don't have the problem in front of me and I might have missed something, but the idea of the fluid expanding to refill the larger pipe doesn't seem consistent with the behavior of liquids, which are pretty much incompressible at ordinary pressures. However note that I am sometimes wrong when I disagree with the textbook's solution. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
"