course Phy 202 ?i???????e???assignment #007K????L??^?|???}?Physics II
......!!!!!!!!...................................
17:07:09 Query set 5 problems 16-20 explain how we calculate the average force exerted by a particle of mass m moving at speed v which collides at a time interval `dt elastically and at a right angle with a solid wall
......!!!!!!!!...................................
RESPONSE --> k
.................................................
......!!!!!!!!...................................
17:10:24 Query set 5 problems 16-20 explain how we calculate the average force exerted by a particle of mass m moving at speed v which collides at a time interval `dt elastically and at a right angle with a solid wall
......!!!!!!!!...................................
RESPONSE --> impulse exerted on a particle in a collision is the change in the momentum of that particle during a collision. The impulse-momentum theorem states that the change in momentum in a collision is equal to the impulse, the average force multiplied by the time interval between collisions average force is thus change in momentum / time interval; the time interval is the round-trip distance divided by the velocity, or 2L / v so the average force is -2 m v / ( 2L / v) = m v^2 / L
.................................................
......!!!!!!!!...................................
17:11:39 ** The impulse exerted on a particle in a collision is the change in the momentum of that particle during a collision. The impulse-momentum theorem says that the change in momentum in a collision is equal to the impulse, the average force * the time interval between collisions. The average force is thus change in momentum / time interval; the time interval is the round-trip distance divided by the velocity, or 2L / v so the average force is -2 m v / ( 2L / v) = m v^2 / L If there were N such particles the total average force would be N * m v^2 / L If the directions are random we distribute the force equally over the 3 dimensions of space and for one direction we get get 1/3 the force found above, or 1/3 N * m v^2 / L. This 3-way distribution of force is related to the fact that for the average velocity vector we have v^2 = vx^2 + vy^2 + vz^2, where v is average magnitude of velocity and vx, vy and vz the x, y and z components of the velocity (more specifically the rms averages--the square root of the average of the squared components). **
......!!!!!!!!...................................
RESPONSE --> I got most of the first part of the question right but I didn't work the whole problem up until the end like it states in the paragraphs below.
.................................................
......!!!!!!!!...................................
17:11:49 ** The impulse exerted on a particle in a collision is the change in the momentum of that particle during a collision. The impulse-momentum theorem says that the change in momentum in a collision is equal to the impulse, the average force * the time interval between collisions. The average force is thus change in momentum / time interval; the time interval is the round-trip distance divided by the velocity, or 2L / v so the average force is -2 m v / ( 2L / v) = m v^2 / L If there were N such particles the total average force would be N * m v^2 / L If the directions are random we distribute the force equally over the 3 dimensions of space and for one direction we get get 1/3 the force found above, or 1/3 N * m v^2 / L. This 3-way distribution of force is related to the fact that for the average velocity vector we have v^2 = vx^2 + vy^2 + vz^2, where v is average magnitude of velocity and vx, vy and vz the x, y and z components of the velocity (more specifically the rms averages--the square root of the average of the squared components). **
......!!!!!!!!...................................
RESPONSE --> k
.................................................
......!!!!!!!!...................................
17:11:54 Summarize the relationship between the thermal energy that goes into the system during a cycle, the work done by the system during a cycle, and the thermal energy removed or dissipated during the cycle.
......!!!!!!!!...................................
RESPONSE --> k
.................................................
......!!!!!!!!...................................
17:12:43 Summarize the relationship between the thermal energy that goes into the system during a cycle, the work done by the system during a cycle, and the thermal energy removed or dissipated during the cycle.
......!!!!!!!!...................................
RESPONSE --> the thermal energy that goes into the system must equal the total of the work done by the system and the thermal energy removed from the system. What goes in must come out, either in the form of work or thermal energy.
.................................................
......!!!!!!!!...................................
17:13:02 ** Work-energy is conserved within an isolated system. So the thermal energy that goes into the system must equal the total of the work done by the system and the thermal energy removed from the system. What goes in must come out, either in the form of work or thermal energy. **
......!!!!!!!!...................................
RESPONSE --> did good on that specific question!!
.................................................
......!!!!!!!!...................................
17:13:11 ** Work-energy is conserved within an isolated system. So the thermal energy that goes into the system must equal the total of the work done by the system and the thermal energy removed from the system. What goes in must come out, either in the form of work or thermal energy. **
......!!!!!!!!...................................
RESPONSE --> k
.................................................
......!!!!!!!!...................................
17:13:16 If you know the work done by a thermodynamic system during a cycle and the thermal energy removed or dissipated during the cycle, how would you calculate the efficiency of the cycle?
......!!!!!!!!...................................
RESPONSE --> alrigh
.................................................
......!!!!!!!!...................................
17:14:11 If you know the work done by a thermodynamic system during a cycle and the thermal energy removed or dissipated during the cycle, how would you calculate the efficiency of the cycle?
......!!!!!!!!...................................
RESPONSE --> Efficiency is work done / energy input. Add the amount of thermal energy removed to the amount of work done to get the input. Divide work by the energy input.
.................................................
......!!!!!!!!...................................
17:14:28 ** STUDENT SOLUTION: Efficiency is work done / energy input. Add the amount thermal energy removed to the amount of work done to get the input. Then, divide work by the energy input. **
......!!!!!!!!...................................
RESPONSE --> got that one correct
.................................................
......!!!!!!!!...................................
17:14:36 ** STUDENT SOLUTION: Efficiency is work done / energy input. Add the amount thermal energy removed to the amount of work done to get the input. Then, divide work by the energy input. **
......!!!!!!!!...................................
RESPONSE --> k
.................................................
......!!!!!!!!...................................
17:14:42 prin phy and gen phy problem 15.2, cylinder with light frictionless piston atm pressure, 1400 kcal added, volume increases slowly from 12.0 m^3 to 18.2 m^3. Find work and chagne in internal energy.
......!!!!!!!!...................................
RESPONSE --> k
.................................................
......!!!!!!!!...................................
17:15:38 prin phy and gen phy problem 15.2, cylinder with light frictionless piston atm pressure, 1400 kcal added, volume increases slowly from 12.0 m^3 to 18.2 m^3. Find work and chagne in internal energy.
......!!!!!!!!...................................
RESPONSE --> `dW = P `dV = 1 atm * (18.2 m^3 - 12 m^3) = (101.3 * 10^3 N/m^2) * (6.2 m^3) = 630 * 10^3 N * m = 6.3 * 10^5 J. A total of 1400 kcal = 1400 * 4200 J = 5.9 * 10^6 J of thermal energy is added to the system, the change in internal energy is `dU = `dQ - `dW = 5.9*10^6 J - 6.3 * 10^5 J = 5.9 * 10^6 J - .63 * 10^6 J = 5.3 * 10^6 J.
.................................................
......!!!!!!!!...................................
17:15:53 Work done at constant pressure is P `dV, so the work done in this situation is `dW = P `dV = 1 atm * (18.2 m^3 - 12 m^3) = (101.3 * 10^3 N/m^2) * (6.2 m^3) = 630 * 10^3 N * m = 6.3 * 10^5 J. A total of 1400 kcal = 1400 * 4200 J = 5.9 * 10^6 J of thermal energy is added to the system, the change in internal energy is `dU = `dQ - `dW = 5.9*10^6 J - 6.3 * 10^5 J = 5.9 * 10^6 J - .63 * 10^6 J = 5.3 * 10^6 J. It is worth thinking about the P vs. V graph of this process. The pressure P remains constant at 101.3 * 10^3 J as the volume changes from 12 m^3 to 18.2 m^3, so the graph will be a straight line segment from the point (12 m^3, 101.3 * 10^3 J) to the point (18.2 m^3, 101.3 * 10^3 J). This line segment is horizontaland the region above the horizontal axis and beneath the segment is a rectangle whose width is 6.2 * 10^3 m^3 and whose altitude is 101.3 * 10^3 N/m^2; its area is therefore the product of its altitude and width, which is 6.3 * 10^5 N m, or 6.3 * 10^5 J, the same as the word we calculated above.
......!!!!!!!!...................................
RESPONSE --> alright i think that i got most of that one
.................................................
......!!!!!!!!...................................
17:16:16 prin phy and gen phy problem 15.5, 1.0 L at 4.5 atm isothermally expanded until pressure is 1 atm then compressed at const pressure to init volume, final heated to return to original volume. Sketch and label graph.
......!!!!!!!!...................................
RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. Always critique your solutions by describing any insights you had or errors you makde, and by explaining how you can make use of the insight or how you now know how to avoid certain errors. Also pose for the instructor any question or questions that you have related to the problem or series of problems. ok
.................................................
......!!!!!!!!...................................
17:18:00 prin phy and gen phy problem 15.5, 1.0 L at 4.5 atm isothermally expanded until pressure is 1 atm then compressed at const pressure to init volume, final heated to return to original volume. Sketch and label graph.
......!!!!!!!!...................................
RESPONSE --> When a confined ideal gas is expanded isothermally its pressure and volume change, while the number of moled and the temperature remain constant. Since PV = n R T, it follows that P V remains constant. In the initial state P = 4.5 atm and V = 1 liter, so P V = 4.5 atm * 1 liter = 4.5 atm * liter (this could be expressed in standard units since 1 atm = 101.3 kPa = 101.3 * 10^3 N/m^2 and 1 liters = .001 m^3, but it's more convenient to first sketch and label the graph in units of atm and liters). During the isothermal expansion, therefore, since P V remains constant we have P V = 4.5 atm liters. At a pressure of 1 atm, therefore, the volume will be V = 4.5 atm liter / P = 4.5 atm liter / (1 atm) = 4.5 liters. Finally the gas is heated at constant volume until its pressure returns to 4.5 atm. The constant volume dictates that the graph follow a vertical line from (1 liter, 1 atm) back to (4.5 liters, 1 atm).
.................................................
......!!!!!!!!...................................
17:18:05 When a confined ideal gas is expanded isothermally its pressure and volume change, while the number of moled and the temperature remain constant. Since PV = n R T, it follows that P V remains constant. In the initial state P = 4.5 atm and V = 1 liter, so P V = 4.5 atm * 1 liter = 4.5 atm * liter (this could be expressed in standard units since 1 atm = 101.3 kPa = 101.3 * 10^3 N/m^2 and 1 liters = .001 m^3, but it's more convenient to first sketch and label the graph in units of atm and liters). During the isothermal expansion, therefore, since P V remains constant we have P V = 4.5 atm liters. At a pressure of 1 atm, therefore, the volume will be V = 4.5 atm liter / P = 4.5 atm liter / (1 atm) = 4.5 liters. The graph follows a curved path from (1 liter, 4.5 atm) to (4.5 liters, 1 atm). At the gas is compressed at constant pressure back to its initial 1 liter volume, the pressure remains constant so the graph follows a horizontal line from (4.5liters, 1 atm) to (1 liter, 1 atm). Note that this compression is accomplished by cooling the gas, or allowing it to cool. Finally the gas is heated at constant volume until its pressure returns to 4.5 atm. The constant volume dictates that the graph follow a vertical line from (1 liter, 1 atm) back to (4.5 liters, 1 atm). The graph could easily be relabeled to usestandard metric units. 1 atm = 101.3 kPa = 101.3 * 10^3 Pa = 101.3 * 10^3 N/m^2, so 4.5 atm = 4.5 * 101.3 * 10^3 Pa = 4.6 * 10^3 Pa = 4.6 * 10^3 N/m^2. 1 liter = .001 m^3 so 4.5 liters = 4.5 m^3. Since P V = 4.5 atm liters, P = 4.5 atm liters / V. This is of the form P = c / V, with c a constant. For positive values of V, this curve descendsfrom a vertical asymptote with the vertical axis (the V axis) through the point (1, c) then approaches a horizontal asymptote with the horizontal axis. For c = 4.5 atm liters, the curve therefore passes through the point (1 liter, 4.5 atm). As we have seen it also passes through (4.5 liters, 1 atm).
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:18:13 When a confined ideal gas is expanded isothermally its pressure and volume change, while the number of moled and the temperature remain constant. Since PV = n R T, it follows that P V remains constant. In the initial state P = 4.5 atm and V = 1 liter, so P V = 4.5 atm * 1 liter = 4.5 atm * liter (this could be expressed in standard units since 1 atm = 101.3 kPa = 101.3 * 10^3 N/m^2 and 1 liters = .001 m^3, but it's more convenient to first sketch and label the graph in units of atm and liters). During the isothermal expansion, therefore, since P V remains constant we have P V = 4.5 atm liters. At a pressure of 1 atm, therefore, the volume will be V = 4.5 atm liter / P = 4.5 atm liter / (1 atm) = 4.5 liters. The graph follows a curved path from (1 liter, 4.5 atm) to (4.5 liters, 1 atm). At the gas is compressed at constant pressure back to its initial 1 liter volume, the pressure remains constant so the graph follows a horizontal line from (4.5liters, 1 atm) to (1 liter, 1 atm). Note that this compression is accomplished by cooling the gas, or allowing it to cool. Finally the gas is heated at constant volume until its pressure returns to 4.5 atm. The constant volume dictates that the graph follow a vertical line from (1 liter, 1 atm) back to (4.5 liters, 1 atm). The graph could easily be relabeled to usestandard metric units. 1 atm = 101.3 kPa = 101.3 * 10^3 Pa = 101.3 * 10^3 N/m^2, so 4.5 atm = 4.5 * 101.3 * 10^3 Pa = 4.6 * 10^3 Pa = 4.6 * 10^3 N/m^2. 1 liter = .001 m^3 so 4.5 liters = 4.5 m^3. Since P V = 4.5 atm liters, P = 4.5 atm liters / V. This is of the form P = c / V, with c a constant. For positive values of V, this curve descendsfrom a vertical asymptote with the vertical axis (the V axis) through the point (1, c) then approaches a horizontal asymptote with the horizontal axis. For c = 4.5 atm liters, the curve therefore passes through the point (1 liter, 4.5 atm). As we have seen it also passes through (4.5 liters, 1 atm).
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:18:18 gen phy problem 15.12, a-c curved path `dW = -35 J, `dQ = -63 J; a-b-c `dW = - 48 J gen phy how much thermal energy goes into the system along path a-b-c and why?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:19:54 gen phy problem 15.12, a-c curved path `dW = -35 J, `dQ = -63 J; a-b-c `dW = - 48 J gen phy how much thermal energy goes into the system along path a-b-c and why?
......!!!!!!!!...................................
RESPONSE --> `dU = `dQ - `dW = -63 J -(-35 J) = -28 J. It follows that at point c, the internal energy of the system is 28 J less than at point a, and this will be the case no matter what path is followed from a to c. Along the path a-b-c we have -48 J of work done by the system, which means that the system tends to gain 48 J in the process, while as just observed the internal energy goes down by 28 Joules. The system therefore have `dQ = `dU + `dW = -28 J + (-48 J) = -76 J, and 76 J of internal energy must be removed from the system
.................................................
......!!!!!!!!...................................
17:20:01 ** I'll need to look at the graph in the text to give a reliably correct answer to this question. However the gist of the argument goes something like this: `dQ is the energy transferred to the system, `dW the work done by the system along the path. Along the curved path the system does -35 J of work and -63 J of thermal energy is added--meaning that 35 J of work are done on the system and the system loses 63 J of thermal energy. If a system gains 35 J of energy by having work done on it while losing 63 J of thermal energy, its internal energy goes down by 28 J (losing thermal energy take internal energy from the system, doing work would take energy from the system so doing negative work adds energy to the system). So between a and c along the curved path the system loses 28 J of internal energy. In terms of the equation, `dU = `dQ - `dW = -63 J -(-35 J) = -28 J. It follows that at point c, the internal energy of the system is 28 J less than at point a, and this will be the case no matter what path is followed from a to c. Along the path a-b-c we have -48 J of work done by the system, which means that the system tends to gain 48 J in the process, while as just observed the internal energy goes down by 28 Joules. The system therefore have `dQ = `dU + `dW = -28 J + (-48 J) = -76 J, and 76 J of internal energy must be removed from the system.**
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:20:09 ** I'll need to look at the graph in the text to give a reliably correct answer to this question. However the gist of the argument goes something like this: `dQ is the energy transferred to the system, `dW the work done by the system along the path. Along the curved path the system does -35 J of work and -63 J of thermal energy is added--meaning that 35 J of work are done on the system and the system loses 63 J of thermal energy. If a system gains 35 J of energy by having work done on it while losing 63 J of thermal energy, its internal energy goes down by 28 J (losing thermal energy take internal energy from the system, doing work would take energy from the system so doing negative work adds energy to the system). So between a and c along the curved path the system loses 28 J of internal energy. In terms of the equation, `dU = `dQ - `dW = -63 J -(-35 J) = -28 J. It follows that at point c, the internal energy of the system is 28 J less than at point a, and this will be the case no matter what path is followed from a to c. Along the path a-b-c we have -48 J of work done by the system, which means that the system tends to gain 48 J in the process, while as just observed the internal energy goes down by 28 Joules. The system therefore have `dQ = `dU + `dW = -28 J + (-48 J) = -76 J, and 76 J of internal energy must be removed from the system.**
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:20:17 gen phy How are the work done by the system, the thermal energy added to the system and the change in the internal energy of the system related, and what is this relationship have to do with conservation of energy?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
17:20:41 gen phy How are the work done by the system, the thermal energy added to the system and the change in the internal energy of the system related, and what is this relationship have to do with conservation of energy?
......!!!!!!!!...................................
RESPONSE --> If a system does work it tends to reduce internal energy, so `dW tends to decrease `dU. If thermal energy is added to the system `dQ tends to increase `dU. This leads to the conclusion that `dU = `dQ - `dW. Thus for example if `dW = -48 J and `dU = -28 J, `dQ = `dU + `dW = -28 J + -48 J = -76 J
.................................................
......!!!!!!!!...................................
17:20:46 ** If a system does work it tends to reduce internal energy, so `dW tends to decrease `dU. If thermal energy is added to the system `dQ tends to increase `dU. This leads to the conclusion that `dU = `dQ - `dW. Thus for example if `dW = -48 J and `dU = -28 J, `dQ = `dU + `dW = -28 J + -48 J = -76 J. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:20:53 ** If a system does work it tends to reduce internal energy, so `dW tends to decrease `dU. If thermal energy is added to the system `dQ tends to increase `dU. This leads to the conclusion that `dU = `dQ - `dW. Thus for example if `dW = -48 J and `dU = -28 J, `dQ = `dU + `dW = -28 J + -48 J = -76 J. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:20:57 gen phy How does the halving of pressure caused a halving of the magnitude of the work, and why is the work positive instead of negative as it was in the process a-b-c?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:22:01 gen phy How does the halving of pressure caused a halving of the magnitude of the work, and why is the work positive instead of negative as it was in the process a-b-c?
......!!!!!!!!...................................
RESPONSE --> Work is the area under the pressure vs. volume curve. If you have half the pressure between two volumes the graph has half the altitude, which leads to half the area. The 'width' of a region is final volume - initial volume. If the direction of the process is such that final volume is less than initial volume going 'backwards', in the negative x direction then with 'width' is negative and the area is negative.
.................................................
......!!!!!!!!...................................
17:22:08 ** Work is the area under the pressure vs. volume curve. If you have half the pressure between two volumes the graph has half the altitude, which leads to half the area. The 'width' of a region is final volume - initial volume. If the direction of the process is such that final volume is less than initial volume (i.e., going 'backwards', in the negative x direction) then with 'width' is negative and the area is negative. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:22:38 query univ 19.62 (17.46 10th edition) .25 mol oxygen 240 kPa 355 K. Isobaric to double vol, isothermal back, isochoric to original pressure.
......!!!!!!!!...................................
RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. Always critique your solutions by describing any insights you had or errors you makde, and by explaining how you can make use of the insight or how you now know how to avoid certain errors. Also pose for the instructor any question or questions that you have related to the problem or series of problems. ok
.................................................
......!!!!!!!!...................................
17:22:45 ** .25 mol oxygen at 240 kPa occupies about V = n R T / P = .25 mol * 8.31 J / (mol K) * 355 K / (2.4 * 10^5 N/m^2) = .003 m^3, very approximately. Doubling volume, `dV = 2 * V - V = V = .003 m^2 and P = 2.4 * 10^5 Pa so P `dv = 700 J, very approximately. During isothermal compression we have n = const and T = const so P = n R T / V. Compressing to half the volume, since PV = const, gets us to double the pressure, so max pressure is 2 * 240 kPA = 480 kPa. To get work we integrate P dV. Integral of P dV is calculated from antiderivative n R T ln | V |; integrating between V1 and V2 we have n R T ln | V2 | - n R T ln | V1 | = n R T ln | V2 / V1 |. In this case V2 = V and V1 = 2 V so V2 / V1 = 1/2 and we have `dW = n R T ln(1/2) = .25 mol * 8.31 J/(mol K) * 710 K * (-.7) = -1000 J, approx. So net work is about 700 J - 1000 J = -300 J **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:22:57 univ phy describe your graph of P vs. V
......!!!!!!!!...................................
RESPONSE --> dont do
.................................................
......!!!!!!!!...................................
17:23:06 ** The graph proceeds horizontally to the right from original P and V to doubled V, then to the left along a curve that increases at an incr rate as we move to the left (equation P = 2 P0 V0 / V) until we're just above the starting point, then vertically down to the starting pt. **
......!!!!!!!!...................................
RESPONSE --> not done
.................................................
......!!!!!!!!...................................
17:23:14 univ phy What is the temperature during the isothermal compression?
......!!!!!!!!...................................
RESPONSE --> don't do
.................................................
......!!!!!!!!...................................
17:23:22 ** If vol doubles at const pressure then temp doubles to 710 K, from which isothermal compression commences. So the compression is at 710 K. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:23:29 univ phy What is the max pressure?
......!!!!!!!!...................................
RESPONSE --> don't do
.................................................
......!!!!!!!!...................................
17:23:33 ** It starts the isothermal at the original 240 kPa and its volume is halved at const temp. So the pressure doubles to 480 kPa. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
X??????????{??assignment #008 K????L??^?|???}?Physics II 06-20-2006 ????????????assignment #008 K????L??^?|???}?Physics II 06-20-2006
......!!!!!!!!...................................
17:24:30 prin phy and gen phy problem 15.19 What is the maximum efficiency of a heat engine operating between temperatures of 380 C and 580 C?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:25:23 prin phy and gen phy problem 15.19 What is the maximum efficiency of a heat engine operating between temperatures of 380 C and 580 C?
......!!!!!!!!...................................
RESPONSE --> The maximum possible efficiency is (T_h - T_c) / T_h, where T_h and T_c are the absolute max and min operating temperatures. T_h is (580 + 273)K = 853 K and T_c is (380 + 273) K = 653 K, so the maximum theoretical efficiency is max efficiency = (T_h - T_c) / T_h = (853 K - 653 K) / (853 K) = .23 23% of thermal energy goes into the engine.
.................................................
......!!!!!!!!...................................
17:25:37 The maximum possible efficiency is (T_h - T_c) / T_h, where T_h and T_c are the absolute max and min operating temperatures. T_h is (580 + 273)K = 853 K and T_c is (380 + 273) K = 653 K, so the maximum theoretical efficiency is max efficiency = (T_h - T_c) / T_h = (853 K - 653 K) / (853 K) = .23, approx. This means that the work done by this engine will be not greater than about 23% of the thermal energy that goes into it.
......!!!!!!!!...................................
RESPONSE --> got that one correct.
.................................................
......!!!!!!!!...................................
17:25:46 The maximum possible efficiency is (T_h - T_c) / T_h, where T_h and T_c are the absolute max and min operating temperatures. T_h is (580 + 273)K = 853 K and T_c is (380 + 273) K = 653 K, so the maximum theoretical efficiency is max efficiency = (T_h - T_c) / T_h = (853 K - 653 K) / (853 K) = .23, approx. This means that the work done by this engine will be not greater than about 23% of the thermal energy that goes into it.
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:25:52 query gen phy problem 15.26 source 550 C -> Carnot eff. 28%; source temp for Carnot eff. 35%?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:28:33 query gen phy problem 15.26 source 550 C -> Carnot eff. 28%; source temp for Carnot eff. 35%?
......!!!!!!!!...................................
RESPONSE --> Carnot efficiency is eff = (Th - Tc) / Th. Solving this for Tc multiply both sides by Th to get eff * Th = Th - Tc so that Tc = Th - eff * Th = Th ( 1 - eff). note that all temperatures must be absolute so need to work with the Kelvin scale (adding 273 C to the Celsius temperature to get the Kelvin temperature) If Th = 550 C = 823 K and efficiency is 30% then have Tc =823 K * ( 1 - .28) = 592 K. Now want Carnot efficiency to be 35% for this Tc. solve eff = (Th - Tc) / Th for Th: Tc multiply both sides by Th to get eff * Th = Th - Tc so that eff * Th - Th = -Tc and Tc = Th - eff * Th or Tc = Th ( 1 - eff) and Th = Tc / (1 - eff). If Tc = 576 K and eff = .35 Th = 592 K / ( 1 - .35 ) = 592 C / .6 = 912 K, . This is (912 - 273) C = 639 C.
.................................................
......!!!!!!!!...................................
17:28:38 ** Carnot efficiency is eff = (Th - Tc) / Th. Solving this for Tc we multiply both sides by Th to get eff * Th = Th - Tc so that Tc = Th - eff * Th = Th ( 1 - eff). We note that all temperatures must be absolute so we need to work with the Kelvin scale (adding 273 C to the Celsius temperature to get the Kelvin temperature) If Th = 550 C = 823 K and efficiency is 30% then we have Tc =823 K * ( 1 - .28) = 592 K. Now we want Carnot efficiency to be 35% for this Tc. We solve eff = (Th - Tc) / Th for Th: Tc we multiply both sides by Th to get eff * Th = Th - Tc so that eff * Th - Th = -Tc and Tc = Th - eff * Th or Tc = Th ( 1 - eff) and Th = Tc / (1 - eff). If Tc = 576 K and eff = .35 we get Th = 592 K / ( 1 - .35 ) = 592 C / .6 = 912 K, approx. This is (912 - 273) C = 639 C. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:28:44 univ phy problem 20.44 (18.40 10th edition) ocean thermal energy conversion 6 C to 27 C At 210 kW, what is the rate of extraction of thermal energy from the warm water and the rate of absorption by the cold water?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:28:48 ** work done / thermal energy required = .07 so thermal energy required = work done / .07. Translating directly to power, thermal energy must be extracted at rate 210 kW / .07 = 30,000 kW. The cold water absorbs what's left after the 210 kW go into work, or 29,790 kW. Each liter supplies 4186 J for every degree, or about 80 kJ for the 19 deg net temp change. Needing 30,000 kJ/sec this requires about 400 liters / sec, or well over a million liters / hour. Comment from student: To be honest, I was suprised the efficiency was so low. Efficiency is low but the energy is cheap and environmental impact in the deep ocean can be negligible so the process can be economical, if a bit ugly. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
???]??????j??? assignment #009 K????L??^?|???}?Physics II 06-20-2006 y??K????????????assignment #009 K????L??^?|???}?Physics II 06-20-2006
......!!!!!!!!...................................
17:30:24 Query introductory set 6, problems 1-10 explain how we know that the velocity of a periodic wave is equal to the product of its wavelength and frequency
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:30:52 Query introductory set 6, problems 1-10 explain how we know that the velocity of a periodic wave is equal to the product of its wavelength and frequency
......!!!!!!!!...................................
RESPONSE --> know how many wavelength segments will pass every second, and we know the length of each, so that multiplying the two gives us the velocity with which they must be passing.
.................................................
......!!!!!!!!...................................
17:30:58 ** we know how many wavelength segments will pass every second, and we know the length of each, so that multiplying the two gives us the velocity with which they must be passing **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:31:08 ** we know how many wavelength segments will pass every second, and we know the length of each, so that multiplying the two gives us the velocity with which they must be passing **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:31:14 explain how we can reason out that the period of a periodic wave is equal to its wavelength divided by its velocity
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:31:46 explain how we can reason out that the period of a periodic wave is equal to its wavelength divided by its velocity
......!!!!!!!!...................................
RESPONSE --> know how far it is between peaks (wavelength) and how fast the wavetrain is passing (velocity) we can divide the distance between peaks by the velocity to see how much time passes between peaks at a given point. That is, period is wavelength / velocity
.................................................
......!!!!!!!!...................................
17:31:59 ** If we know how far it is between peaks (wavelength) and how fast the wavetrain is passing (velocity) we can divide the distance between peaks by the velocity to see how much time passes between peaks at a given point. That is, period is wavelength / velocity. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:32:08 ** If we know how far it is between peaks (wavelength) and how fast the wavetrain is passing (velocity) we can divide the distance between peaks by the velocity to see how much time passes between peaks at a given point. That is, period is wavelength / velocity. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:32:13 explain why the equation of motion at a position x along a sinusoidal wave is A sin( `omega t - x / v) if the equation of motion at the x = 0 position is A sin(`omega t)
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:32:48 explain why the equation of motion at a position x along a sinusoidal wave is A sin( `omega t - x / v) if the equation of motion at the x = 0 position is A sin(`omega t)
......!!!!!!!!...................................
RESPONSE --> key is the time delay. Time for the disturbance to get from x = 0 to position x is x / v. What happens at the new position is delayed by time x/v, so what happens there at clock time t happened at x=0 when clock time was t = x/v. In more detail: If x is the distance down the wave then x / v is the time it takes the wave to travel that distance. What happens at time t at position x is what happened at time t - x/v at position x=0. That expression should be y = sin(`omega * (t - x / v)). } The sine function goes from -1 to 0 to 1 to 0 to -1 to 0 to 1 to 0 ..., one cycle after another. In harmonic waves the motion of a point on the wave (think of the motion of a black mark on a white rope with vertical pulses traveling down the rope) will go thru this sort of motion (down, middle, up, middle, down, etc.) as repeated pulses pass. If I'm creating the pulses at my end, and that black mark is some distance x down in rope, then what you see at the black mark is what I did at time x/v earlier
.................................................
......!!!!!!!!...................................
17:33:00 ** the key is the time delay. Time for the disturbance to get from x = 0 to position x is x / v. What happens at the new position is delayed by time x/v, so what happens there at clock time t happened at x=0 when clock time was t = x/v. In more detail: If x is the distance down the wave then x / v is the time it takes the wave to travel that distance. What happens at time t at position x is what happened at time t - x/v at position x=0. That expression should be y = sin(`omega * (t - x / v)). } The sine function goes from -1 to 0 to 1 to 0 to -1 to 0 to 1 to 0 ..., one cycle after another. In harmonic waves the motion of a point on the wave (think of the motion of a black mark on a white rope with vertical pulses traveling down the rope) will go thru this sort of motion (down, middle, up, middle, down, etc.) as repeated pulses pass. If I'm creating the pulses at my end, and that black mark is some distance x down in rope, then what you see at the black mark is what I did at time x/v earlier. **
......!!!!!!!!...................................
RESPONSE --> looks pretty good
.................................................
......!!!!!!!!...................................
17:33:20 ** the key is the time delay. Time for the disturbance to get from x = 0 to position x is x / v. What happens at the new position is delayed by time x/v, so what happens there at clock time t happened at x=0 when clock time was t = x/v. In more detail: If x is the distance down the wave then x / v is the time it takes the wave to travel that distance. What happens at time t at position x is what happened at time t - x/v at position x=0. That expression should be y = sin(`omega * (t - x / v)). } The sine function goes from -1 to 0 to 1 to 0 to -1 to 0 to 1 to 0 ..., one cycle after another. In harmonic waves the motion of a point on the wave (think of the motion of a black mark on a white rope with vertical pulses traveling down the rope) will go thru this sort of motion (down, middle, up, middle, down, etc.) as repeated pulses pass. If I'm creating the pulses at my end, and that black mark is some distance x down in rope, then what you see at the black mark is what I did at time x/v earlier. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:33:29 Query introductory set six, problems 11-14 given the length of a string how do we determine the wavelengths of the first few harmonics?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:34:11 Query introductory set six, problems 11-14 given the length of a string how do we determine the wavelengths of the first few harmonics?
......!!!!!!!!...................................
RESPONSE --> As wavelength decreases you can fit more half-waves onto the string. You can fit one half-wave, or 2 half-waves, or 3, etc.. 1 half-wavelength = string length, or wavelength = 2 * string length; using `lambda to stand for wavelength and L for string length this would be 1 * 1/2 `lambda = L so `lambda = 2 L. For 2 wavelengths fit into the string you get 2 * 1/2 `lambda = L so `lambda = L. For 3 wavelengths you get 3 * 1/2 `lambda = L so `lambda = 2/3 L; etc. } Your wavelengths are therefore 2L, L, 2/3 L, 1/2 L, etc..
.................................................
......!!!!!!!!...................................
17:34:16 ** As wavelength decreases you can fit more half-waves onto the string. You can fit one half-wave, or 2 half-waves, or 3, etc.. So you get 1 half-wavelength = string length, or wavelength = 2 * string length; using `lambda to stand for wavelength and L for string length this would be 1 * 1/2 `lambda = L so `lambda = 2 L. For 2 wavelengths fit into the string you get 2 * 1/2 `lambda = L so `lambda = L. For 3 wavelengths you get 3 * 1/2 `lambda = L so `lambda = 2/3 L; etc. } Your wavelengths are therefore 2L, L, 2/3 L, 1/2 L, etc.. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:34:22 ** As wavelength decreases you can fit more half-waves onto the string. You can fit one half-wave, or 2 half-waves, or 3, etc.. So you get 1 half-wavelength = string length, or wavelength = 2 * string length; using `lambda to stand for wavelength and L for string length this would be 1 * 1/2 `lambda = L so `lambda = 2 L. For 2 wavelengths fit into the string you get 2 * 1/2 `lambda = L so `lambda = L. For 3 wavelengths you get 3 * 1/2 `lambda = L so `lambda = 2/3 L; etc. } Your wavelengths are therefore 2L, L, 2/3 L, 1/2 L, etc.. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:34:28 Given the wavelengths of the first few harmonics and the velocity of a wave disturbance in the string, how do we determine the frequencies of the first few harmonics?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:34:57 Given the wavelengths of the first few harmonics and the velocity of a wave disturbance in the string, how do we determine the frequencies of the first few harmonics?
......!!!!!!!!...................................
RESPONSE --> The frequency is the number of crests passing per unit of time. I can imagine a 1-second chunk of the wave divided into segments each equal to the wavelength. The number of peaks is equal to the length of the entire chunk divided by the length of a 1-wavelength segment. This is the number of peaks passing per second. So frequency is equal to the wave velocity divided by the wavelength
.................................................
......!!!!!!!!...................................
17:35:06 ** The frequency is the number of crests passing per unit of time. We can imagine a 1-second chunk of the wave divided into segments each equal to the wavelength. The number of peaks is equal to the length of the entire chunk divided by the length of a 1-wavelength segment. This is the number of peaks passing per second. So frequency is equal to the wave velocity divided by the wavelength. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:35:13 ** The frequency is the number of crests passing per unit of time. We can imagine a 1-second chunk of the wave divided into segments each equal to the wavelength. The number of peaks is equal to the length of the entire chunk divided by the length of a 1-wavelength segment. This is the number of peaks passing per second. So frequency is equal to the wave velocity divided by the wavelength. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:35:18 Given the tension and mass density of a string how do we determine the velocity of the wave in the string?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:35:38 Given the tension and mass density of a string how do we determine the velocity of the wave in the string?
......!!!!!!!!...................................
RESPONSE --> divide tension by mass per unit length and take the square root: v = sqrt ( tension / (mass/length) )
.................................................
......!!!!!!!!...................................
17:35:55 ** We divide tension by mass per unit length and take the square root: v = sqrt ( tension / (mass/length) ). **
......!!!!!!!!...................................
RESPONSE --> got that one correct
.................................................
......!!!!!!!!...................................
17:36:10 ** We divide tension by mass per unit length and take the square root: v = sqrt ( tension / (mass/length) ). **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:36:16 gen phy explain in your own words the meaning of the principal of superposition
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:36:36 gen phy explain in your own words the meaning of the principal of superposition
......!!!!!!!!...................................
RESPONSE --> two different waveforms meet, or are present in a medium, the displacements of the two waveforms are added at each point to create the waveform that will be seen.
.................................................
......!!!!!!!!...................................
17:36:41 ** the principle of superposition tells us that when two different waveforms meet, or are present in a medium, the displacements of the two waveforms are added at each point to create the waveform that will be seen. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:36:49 ** the principle of superposition tells us that when two different waveforms meet, or are present in a medium, the displacements of the two waveforms are added at each point to create the waveform that will be seen. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:36:54 gen phy what does it mean to say that the angle of reflection is equal to the angle of incidence?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:37:14 gen phy what does it mean to say that the angle of reflection is equal to the angle of incidence?
......!!!!!!!!...................................
RESPONSE --> angle of incidence with a surface is the angle with the perpendicular to that surface; when a ray comes in at a given angle of incidence it reflects at an equal angle on the other side of that perpendicular.
.................................................
......!!!!!!!!...................................
17:37:23 ** angle of incidence with a surface is the angle with the perpendicular to that surface; when a ray comes in at a given angle of incidence it reflects at an equal angle on the other side of that perpendicular **
......!!!!!!!!...................................
RESPONSE --> looks good
.................................................
L????????????assignment #010 K????L??^?|???}?Physics II 06-20-2006 ????????x??? assignment #010 K????L??^?|???}?Physics II 06-20-2006
......!!!!!!!!...................................
17:38:47 **** Query introductory set six, problems 11-14 **** given the length of a string how do we determine the wavelengths of the first few harmonics?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:39:19 **** Query introductory set six, problems 11-14 **** given the length of a string how do we determine the wavelengths of the first few harmonics?
......!!!!!!!!...................................
RESPONSE --> As wavelength decreases you can fit more half-waves onto the string. You can fit one half-wave, or 2 half-waves, or 3, etc.. 1 half-wavelength = string length, or wavelength = 2 * string length; using `lambda to stand for wavelength and L for string length this would be 1 * 1/2 `lambda = L so `lambda = 2 L. For 2 wavelengths fit into the string you get 2 * 1/2 `lambda = L so `lambda = L. For 3 wavelengths you get 3 * 1/2 `lambda = L so `lambda = 2/3 L; etc. } Your wavelengths are therefore 2L, L, 2/3 L, 1/2 L, etc..
.................................................
......!!!!!!!!...................................
17:39:25 ** As wavelength decreases you can fit more half-waves onto the string. You can fit one half-wave, or 2 half-waves, or 3, etc.. So you get 1 half-wavelength = string length, or wavelength = 2 * string length; using `lambda to stand for wavelength and L for string length this would be 1 * 1/2 `lambda = L so `lambda = 2 L. For 2 wavelengths fit into the string you get 2 * 1/2 `lambda = L so `lambda = L. For 3 wavelengths you get 3 * 1/2 `lambda = L so `lambda = 2/3 L; etc. } Your wavelengths are therefore 2L, L, 2/3 L, 1/2 L, etc.. FOR A STRING FREE AT ONE END: The wavelengths of the first few harmonics are found by the node - antinode distance between the ends. The first node corresponds to 1/4 wavelength. The second harmonic is from node to antinode to node to antinode, or 4/3. the third and fourth harmonics would therefore be 5/4 and 7/4 respectively. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:40:01 ** As wavelength decreases you can fit more half-waves onto the string. You can fit one half-wave, or 2 half-waves, or 3, etc.. So you get 1 half-wavelength = string length, or wavelength = 2 * string length; using `lambda to stand for wavelength and L for string length this would be 1 * 1/2 `lambda = L so `lambda = 2 L. For 2 wavelengths fit into the string you get 2 * 1/2 `lambda = L so `lambda = L. For 3 wavelengths you get 3 * 1/2 `lambda = L so `lambda = 2/3 L; etc. } Your wavelengths are therefore 2L, L, 2/3 L, 1/2 L, etc.. FOR A STRING FREE AT ONE END: The wavelengths of the first few harmonics are found by the node - antinode distance between the ends. The first node corresponds to 1/4 wavelength. The second harmonic is from node to antinode to node to antinode, or 4/3. the third and fourth harmonics would therefore be 5/4 and 7/4 respectively. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:40:07 **** Given the wavelengths of the first few harmonics and the velocity of a wave disturbance in the string, how do we determine the frequencies of the first few harmonics?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:40:51 **** Given the wavelengths of the first few harmonics and the velocity of a wave disturbance in the string, how do we determine the frequencies of the first few harmonics?
......!!!!!!!!...................................
RESPONSE --> The frequency is the number of crests passing per unit of time. I can imagine a 1-second chunk of the wave divided into segments each equal to the wavelength. The number of peaks is equal to the length of the entire chunk divided by the length of a 1-wavelength segment. This is the number of peaks passing per second. So frequency is equal to the wave velocity divided by the wavelength
.................................................
......!!!!!!!!...................................
17:40:56 ** The frequency is the number of crests passing per unit of time. We can imagine a 1-second chunk of the wave divided into segments each equal to the wavelength. The number of peaks is equal to the length of the entire chunk divided by the length of a 1-wavelength segment. This is the number of peaks passing per second. So frequency is equal to the wave velocity divided by the wavelength. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:41:01 ** The frequency is the number of crests passing per unit of time. We can imagine a 1-second chunk of the wave divided into segments each equal to the wavelength. The number of peaks is equal to the length of the entire chunk divided by the length of a 1-wavelength segment. This is the number of peaks passing per second. So frequency is equal to the wave velocity divided by the wavelength. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:41:06 **** Given the tension and mass density of a string how do we determine the velocity of the wave in the string?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:41:27 **** Given the tension and mass density of a string how do we determine the velocity of the wave in the string?
......!!!!!!!!...................................
RESPONSE --> divide tension by mass per unit length: v = sqrt ( tension / (mass/length)
.................................................
......!!!!!!!!...................................
17:41:32 ** We divide tension by mass per unit length: v = sqrt ( tension / (mass/length) ). **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:41:38 ** We divide tension by mass per unit length: v = sqrt ( tension / (mass/length) ). **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:41:42 **** gen phy explain in your own words the meaning of the principal of superposition
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:41:56 **** gen phy explain in your own words the meaning of the principal of superposition
......!!!!!!!!...................................
RESPONSE --> principle of superposition tells us that when two different waveforms meet, or are present in a medium, the displacements of the two waveforms are added at each point to create the waveform that will be seen
.................................................
......!!!!!!!!...................................
17:42:06 ** the principle of superposition tells us that when two different waveforms meet, or are present in a medium, the displacements of the two waveforms are added at each point to create the waveform that will be seen. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:42:14 ** the principle of superposition tells us that when two different waveforms meet, or are present in a medium, the displacements of the two waveforms are added at each point to create the waveform that will be seen. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:42:18 **** gen phy what does it mean to say that the angle of reflection is equal to the angle of incidence?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:42:32 **** gen phy what does it mean to say that the angle of reflection is equal to the angle of incidence?
......!!!!!!!!...................................
RESPONSE --> angle of incidence with a surface is the angle with the perpendicular to that surface; when a ray comes in at a given angle of incidence it reflects at an equal angle on the other side of that perpendicular
.................................................
......!!!!!!!!...................................
17:42:37 ** angle of incidence with a surface is the angle with the perpendicular to that surface; when a ray comes in at a given angle of incidence it reflects at an equal angle on the other side of that perpendicular **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:42:47 query univ phy problem 15.48 (19.32 10th edition) y(x,t) = .75 cm sin[ `pi ( 250 s^-1 t + .4 cm^-1 x) ] What are the amplitude, period, frequency, wavelength and speed of propagation?
......!!!!!!!!...................................
RESPONSE --> dont do
.................................................
......!!!!!!!!...................................
17:42:52 ** y(x, t) = A sin( omega * t + k * x), where amplitude is A, frequency is omega / (2 pi), wavelength is 2 pi / x and velocity of propagation is frequency * wavelength. Period is the reciprocal of frequency. For A = .75 cm, omega = 250 pi s^-1, k = .4 pi cm^-1 we have A=.750 cm frequency is f = 250 pi s^-1 / (2 pi) = 125 s^-1 = 125 Hz. period is T = 1/f = 1 / (125 s^-1) = .008 s wavelength is lambda = (2 pi / (.4 * pi cm^-1)) = 5 cm speed of propagation is v = frequency * wavelength = 125 Hz * 5 cm = 625 cm/s. Note that v = freq * wavelength = omega / (2 pi) * ( 2 pi ) / k = omega / k. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:43:03 ** angle of incidence with a surface is the angle with the perpendicular to that surface; when a ray comes in at a given angle of incidence it reflects at an equal angle on the other side of that perpendicular **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:43:03 ** angle of incidence with a surface is the angle with the perpendicular to that surface; when a ray comes in at a given angle of incidence it reflects at an equal angle on the other side of that perpendicular **
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
17:43:08 query univ phy problem 15.48 (19.32 10th edition) y(x,t) = .75 cm sin[ `pi ( 250 s^-1 t + .4 cm^-1 x) ] What are the amplitude, period, frequency, wavelength and speed of propagation?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:43:12 ** y(x, t) = A sin( omega * t + k * x), where amplitude is A, frequency is omega / (2 pi), wavelength is 2 pi / x and velocity of propagation is frequency * wavelength. Period is the reciprocal of frequency. For A = .75 cm, omega = 250 pi s^-1, k = .4 pi cm^-1 we have A=.750 cm frequency is f = 250 pi s^-1 / (2 pi) = 125 s^-1 = 125 Hz. period is T = 1/f = 1 / (125 s^-1) = .008 s wavelength is lambda = (2 pi / (.4 * pi cm^-1)) = 5 cm speed of propagation is v = frequency * wavelength = 125 Hz * 5 cm = 625 cm/s. Note that v = freq * wavelength = omega / (2 pi) * ( 2 pi ) / k = omega / k. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:43:17 **** Describe your sketch for t = 0 and state how the shapes differ at t = .0005 and t = .0010.
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:43:28 **** Describe your sketch for t = 0 and state how the shapes differ at t = .0005 and t = .0010.
......!!!!!!!!...................................
RESPONSE --> dont do
.................................................
......!!!!!!!!...................................
17:43:32 ** Basic precalculus: For any function f(x) the graph of f(x-h) is translated `dx = h units in the x direction from the graph of y = f(x). The graph of y = sin(k * x - omega * t) = sin(k * ( x - omega / k * t) ) is translated thru displacement `dx = omega / k * t relative to the graph of sin(k x). At t=0, omega * t is zero and we have the original graph of y = .75 cm * sin( k x). The graph of y vs. x forms a sine curve with period 2 pi / k, in this case 2 pi / (pi * .4 cm^-1) = 5 cm which is the wavelength. A complete cycle occurs between x = 0 and x = 5 cm, with zeros at x = 0 cm, 2.5 cm and 5 cm, peak at x = 1.25 cm and 'valley' at x = 3.75 cm. At t=.0005, we are graphing y = .75 cm * sin( k x + .0005 omega), shifted -.0005 * omega / k = -.313 cm in the x direction. The sine wave of the t=0 function y = .75 cm * sin(kx) is shifted -.313 cm, or .313 cm left so now the zeros are at -.313 cm and every 2.5 cm to the right of that, with the peak shifted by -.313 cm to x = .937 cm. At t=.0010, we are graphing y = .75 cm * sin( k x + .0010 omega), shifted -.0010 * omega / k = -.625 cm in the x direction. The sine wave of the t = 0 function y = .75 cm * sin(kx) is shifted -.625 cm, or .625 cm left so now the zeros are at -.625 cm and every 2.5 cm to the right of that, with the peak shifted by -.625 cm to x = +.625 cm. The sequence of graphs clearly shows the motion of the wave to the left at 625 cm / s. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:43:39 ** Basic precalculus: For any function f(x) the graph of f(x-h) is translated `dx = h units in the x direction from the graph of y = f(x). The graph of y = sin(k * x - omega * t) = sin(k * ( x - omega / k * t) ) is translated thru displacement `dx = omega / k * t relative to the graph of sin(k x). At t=0, omega * t is zero and we have the original graph of y = .75 cm * sin( k x). The graph of y vs. x forms a sine curve with period 2 pi / k, in this case 2 pi / (pi * .4 cm^-1) = 5 cm which is the wavelength. A complete cycle occurs between x = 0 and x = 5 cm, with zeros at x = 0 cm, 2.5 cm and 5 cm, peak at x = 1.25 cm and 'valley' at x = 3.75 cm. At t=.0005, we are graphing y = .75 cm * sin( k x + .0005 omega), shifted -.0005 * omega / k = -.313 cm in the x direction. The sine wave of the t=0 function y = .75 cm * sin(kx) is shifted -.313 cm, or .313 cm left so now the zeros are at -.313 cm and every 2.5 cm to the right of that, with the peak shifted by -.313 cm to x = .937 cm. At t=.0010, we are graphing y = .75 cm * sin( k x + .0010 omega), shifted -.0010 * omega / k = -.625 cm in the x direction. The sine wave of the t = 0 function y = .75 cm * sin(kx) is shifted -.625 cm, or .625 cm left so now the zeros are at -.625 cm and every 2.5 cm to the right of that, with the peak shifted by -.625 cm to x = +.625 cm. The sequence of graphs clearly shows the motion of the wave to the left at 625 cm / s. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:43:44 **** If mass / unit length is .500 kg / m what is the tension?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:44:00 **** If mass / unit length is .500 kg / m what is the tension?
......!!!!!!!!...................................
RESPONSE --> Velocity of propagation is v = sqrt(T/ (m/L) ). Solving for T: v^2 = T/ (m/L) v^2*m/L = T T = (6.25 m/s)^2 * 0.5 kg/m so T = 19.5 kg m/s^2 = 19.5 N
.................................................
......!!!!!!!!...................................
17:44:27 ** Velocity of propagation is v = sqrt(T/ (m/L) ). Solving for T: v^2 = T/ (m/L) v^2*m/L = T T = (6.25 m/s)^2 * 0.5 kg/m so T = 19.5 kg m/s^2 = 19.5 N approx. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:44:32 ** Velocity of propagation is v = sqrt(T/ (m/L) ). Solving for T: v^2 = T/ (m/L) v^2*m/L = T T = (6.25 m/s)^2 * 0.5 kg/m so T = 19.5 kg m/s^2 = 19.5 N approx. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:44:37 **** What is the average power?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:45:23 **** What is the average power?
......!!!!!!!!...................................
RESPONSE --> the equation Pav = 1/2 sqrt( m / L * F) * omega^2 * A^2 for the average power transferred by a traveling wave. Substituting m/L, tension F, angular frequency omeage and amplitude A into this equation we obtain Pav = 1/2 sqrt ( .500 kg/m * 195 N) * (250 pi s^-1)^2 * (.0075 m)^2 = .5 sqrt(98 kg^2 m / (s^2 m) ) * 62500 pi^2 s^-2 * .000054 m^2 = .5 * 9.9 kg/s * 6.25 * 10^4 pi^2 s^-2 * 5.4 * 10^-5 m^2 = 17 kg m^2 s^-3 = 17 watts, approx.. The arithmetic here was done mentally so double-check it. The procedure itself is correct.
.................................................
......!!!!!!!!...................................
17:45:30 ** The text gives the equation Pav = 1/2 sqrt( m / L * F) * omega^2 * A^2 for the average power transferred by a traveling wave. Substituting m/L, tension F, angular frequency omeage and amplitude A into this equation we obtain Pav = 1/2 sqrt ( .500 kg/m * 195 N) * (250 pi s^-1)^2 * (.0075 m)^2 = .5 sqrt(98 kg^2 m / (s^2 m) ) * 62500 pi^2 s^-2 * .000054 m^2 = .5 * 9.9 kg/s * 6.25 * 10^4 pi^2 s^-2 * 5.4 * 10^-5 m^2 = 17 kg m^2 s^-3 = 17 watts, approx.. The arithmetic here was done mentally so double-check it. The procedure itself is correct. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
??????????assignment #011 K????L??^?|???}?Physics II 06-20-2006 ??????E??|????? assignment #011 K????L??^?|???}?Physics II 06-20-2006
......!!!!!!!!...................................
17:46:46 Query introductory set six, problems 15-18 how do we determine the energy of a standing wave given the amplitude and frequency of the wave and the mass of the string?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:47:16 Query introductory set six, problems 15-18 how do we determine the energy of a standing wave given the amplitude and frequency of the wave and the mass of the string?
......!!!!!!!!...................................
RESPONSE --> Energy = 2*pi^2*m*f^2*A^2
.................................................
......!!!!!!!!...................................
17:47:47 STUDENT ANSWER AND INSTRUCTOR RESPONSE: Energy = 2*pi^2*m*f^2*A^2 INSTRUCTOR RESPONSE: ** You should understand the way we obtain this formula. We assume that every point of the string in in SHM with amplitude A and frequency f. Since the total energy in SHM is the same as the maximum potential or the max kinetic energy, all we need to do is calculate the max potential energy or kinetic energy of each point on the string and add up the results. Since we know mass, frequency and amplitude, we see that we can calulate the max kinetic energy we can get the result we desire. Going back to the circular model, we see that frequency f and amplitude A imply reference point speed = circumference / period = circumference * frequency = 2 `pi A f. The oscillator at its maximum speed will match the speed of the reference point, so the maximum KE is .5 m v^2 = .5 m (2 `pi A f)^2 = 2 `pi^2 m f^2 A^2. **
......!!!!!!!!...................................
RESPONSE --> well i got the students answer but not what the instructor had to say about the question and answer.
.................................................
......!!!!!!!!...................................
17:47:54 STUDENT ANSWER AND INSTRUCTOR RESPONSE: Energy = 2*pi^2*m*f^2*A^2 INSTRUCTOR RESPONSE: ** You should understand the way we obtain this formula. We assume that every point of the string in in SHM with amplitude A and frequency f. Since the total energy in SHM is the same as the maximum potential or the max kinetic energy, all we need to do is calculate the max potential energy or kinetic energy of each point on the string and add up the results. Since we know mass, frequency and amplitude, we see that we can calulate the max kinetic energy we can get the result we desire. Going back to the circular model, we see that frequency f and amplitude A imply reference point speed = circumference / period = circumference * frequency = 2 `pi A f. The oscillator at its maximum speed will match the speed of the reference point, so the maximum KE is .5 m v^2 = .5 m (2 `pi A f)^2 = 2 `pi^2 m f^2 A^2. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:48:36 If the ends of two strings are driven in phase by a single simple harmonic oscillator, and if the wave velocities in the strings are identical, but the length of one string exceeds that of the other by a known amount, then how do we determine whether a given frequency will cause the 'far ends' of the strings to oscillate in phase?
......!!!!!!!!...................................
RESPONSE --> need to find the wavelength corresponding to the given frequency, which need not be a harmonic frequency. Any frequency will give us a wavelength; any wavelength can be divided into the difference in string lengths to determine whether the extra length is an integer number of wavelengths. Alternatively, the pulse in the longer string will be 'behind' the pulse in the shorter by the time required to travel the extra length. If we know the frequency we can determine whether this 'time difference' corresponds to a whole number of periods; if so the ends will oscillate in phase
.................................................
......!!!!!!!!...................................
17:48:44 ** the question here is whether the far ends of the strings are at the same phase of motion, which occurs only if their lengths differ by exactly one, two, three, ... wavelengths. So we need to find the wavelength corresponding to the given frequency, which need not be a harmonic frequency. Any frequency will give us a wavelength; any wavelength can be divided into the difference in string lengths to determine whether the extra length is an integer number of wavelengths. Alternatively, the pulse in the longer string will be 'behind' the pulse in the shorter by the time required to travel the extra length. If we know the frequency we can determine whether this 'time difference' corresponds to a whole number of periods; if so the ends will oscillate in phase **
......!!!!!!!!...................................
RESPONSE --> looks pretty good
.................................................
......!!!!!!!!...................................
17:49:08 ** the question here is whether the far ends of the strings are at the same phase of motion, which occurs only if their lengths differ by exactly one, two, three, ... wavelengths. So we need to find the wavelength corresponding to the given frequency, which need not be a harmonic frequency. Any frequency will give us a wavelength; any wavelength can be divided into the difference in string lengths to determine whether the extra length is an integer number of wavelengths. Alternatively, the pulse in the longer string will be 'behind' the pulse in the shorter by the time required to travel the extra length. If we know the frequency we can determine whether this 'time difference' corresponds to a whole number of periods; if so the ends will oscillate in phase **
......!!!!!!!!...................................
RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. Always critique your solutions by describing any insights you had or errors you makde, and by explaining how you can make use of the insight or how you now know how to avoid certain errors. Also pose for the instructor any question or questions that you have related to the problem or series of problems. ok
.................................................
......!!!!!!!!...................................
17:49:22 General College Physics and Principles of Physics 11.38: AM 550-1600 kHz, FM 88-108 mHz. What are the wavelength ranges?
......!!!!!!!!...................................
RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. Always critique your solutions by describing any insights you had or errors you makde, and by explaining how you can make use of the insight or how you now know how to avoid certain errors. Also pose for the instructor any question or questions that you have related to the problem or series of problems ok.
.................................................
......!!!!!!!!...................................
17:49:52 General College Physics and Principles of Physics 11.38: AM 550-1600 kHz, FM 88-108 mHz. What are the wavelength ranges?
......!!!!!!!!...................................
RESPONSE --> a frequency of 550 kHz = 550 * 10^3 Hz = 5.5 * 10^5 Hz will correspond to a wavelength of 3 * 10^8 m/s / (5.5 * 10^5 cycles / sec) = 545 meters. a frequency of 1600 kHz = 1.6* 10^6 Hz will correspond to a wavelength of 3 * 10^8 m/s / (1.6 * 10^6 cycles / sec) =187 meters. The wavelengths for the FM range are calculated similarly. a frequency of 88.0 mHz= 88.0 * 10^6 Hz = 8.80 * 10^7 Hz will correspond to a wavelength of 3 * 10^8 m/s / (8.80 * 10^7 cycles / sec) = 3.41 meters. The 108 mHz frequency is calculated similarly and corresponds to a wavelength of 2.78 meters.
.................................................
......!!!!!!!!...................................
17:50:03 At 3 * 10^8 m/s: a frequency of 550 kHz = 550 * 10^3 Hz = 5.5 * 10^5 Hz will correspond to a wavelength of 3 * 10^8 m/s / (5.5 * 10^5 cycles / sec) = 545 meters. a frequency of 1600 kHz = 1.6* 10^6 Hz will correspond to a wavelength of 3 * 10^8 m/s / (1.6 * 10^6 cycles / sec) =187 meters. The wavelengths for the FM range are calculated similarly. a frequency of 88.0 mHz= 88.0 * 10^6 Hz = 8.80 * 10^7 Hz will correspond to a wavelength of 3 * 10^8 m/s / (8.80 * 10^7 cycles / sec) = 3.41 meters. The 108 mHz frequency is calculated similarly and corresponds to a wavelength of 2.78 meters.
......!!!!!!!!...................................
RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. Always critique your solutions by describing any insights you had or errors you makde, and by explaining how you can make use of the insight or how you now know how to avoid certain errors. Also pose for the instructor any question or questions that you have related to the problem or series of problems ok.
.................................................
......!!!!!!!!...................................
17:50:24 At 3 * 10^8 m/s: a frequency of 550 kHz = 550 * 10^3 Hz = 5.5 * 10^5 Hz will correspond to a wavelength of 3 * 10^8 m/s / (5.5 * 10^5 cycles / sec) = 545 meters. a frequency of 1600 kHz = 1.6* 10^6 Hz will correspond to a wavelength of 3 * 10^8 m/s / (1.6 * 10^6 cycles / sec) =187 meters. The wavelengths for the FM range are calculated similarly. a frequency of 88.0 mHz= 88.0 * 10^6 Hz = 8.80 * 10^7 Hz will correspond to a wavelength of 3 * 10^8 m/s / (8.80 * 10^7 cycles / sec) = 3.41 meters. The 108 mHz frequency is calculated similarly and corresponds to a wavelength of 2.78 meters.
......!!!!!!!!...................................
RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. Always critique your solutions by describing any insights you had or errors you makde, and by explaining how you can make use of the insight or how you now know how to avoid certain errors. Also pose for the instructor any question or questions that you have related to the problem or series of problems. ok
.................................................
......!!!!!!!!...................................
17:50:56 General College Physics and Principles of Physics 11.52: What are the possible frequencies of a violin string whose fundamental mode vibrates at 440 Hz?
......!!!!!!!!...................................
RESPONSE --> not sure on how to do this one .
.................................................
......!!!!!!!!...................................
17:51:31 The fundamental mode for a string fixed at both ends fits half a wavelength onto the string and therefore has a wavelength equal to double its length. The next three harmonics fit 2, 3 and 4 half-wavelengths into the length of the string and so have respectively 2, 3 and 4 times the frequency of the fundamental. So the first 4 harmonics are fundamental frequency = 440 Hz First overtone or second harmonic frequency = 2 * 440 Hz = 880 Hz Second overtone or third harmonic frequency = 3 * 440 Hz = 1320 Hz Third overtone or fourth harmonic frequency = 4 * 440 Hz = 1760 Hz
......!!!!!!!!...................................
RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. Always critique your solutions by describing any insights you had or errors you makde, and by explaining how you can make use of the insight or how you now know how to avoid certain errors. Also pose for the instructor any question or questions that you have related to the problem or series of problems. this program doesn't seem to be working right as of now so i will do this again later on in the process.
.................................................
??x{??????f??c??assignment #011 K????L??^?|???}?Physics II 06-20-2006
......!!!!!!!!...................................
17:52:02 Query introductory set six, problems 15-18 how do we determine the energy of a standing wave given the amplitude and frequency of the wave and the mass of the string?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:52:06 STUDENT ANSWER AND INSTRUCTOR RESPONSE: Energy = 2*pi^2*m*f^2*A^2 INSTRUCTOR RESPONSE: ** You should understand the way we obtain this formula. We assume that every point of the string in in SHM with amplitude A and frequency f. Since the total energy in SHM is the same as the maximum potential or the max kinetic energy, all we need to do is calculate the max potential energy or kinetic energy of each point on the string and add up the results. Since we know mass, frequency and amplitude, we see that we can calulate the max kinetic energy we can get the result we desire. Going back to the circular model, we see that frequency f and amplitude A imply reference point speed = circumference / period = circumference * frequency = 2 `pi A f. The oscillator at its maximum speed will match the speed of the reference point, so the maximum KE is .5 m v^2 = .5 m (2 `pi A f)^2 = 2 `pi^2 m f^2 A^2. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:52:12 If the ends of two strings are driven in phase by a single simple harmonic oscillator, and if the wave velocities in the strings are identical, but the length of one string exceeds that of the other by a known amount, then how do we determine whether a given frequency will cause the 'far ends' of the strings to oscillate in phase?
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:52:16 ** the question here is whether the far ends of the strings are at the same phase of motion, which occurs only if their lengths differ by exactly one, two, three, ... wavelengths. So we need to find the wavelength corresponding to the given frequency, which need not be a harmonic frequency. Any frequency will give us a wavelength; any wavelength can be divided into the difference in string lengths to determine whether the extra length is an integer number of wavelengths. Alternatively, the pulse in the longer string will be 'behind' the pulse in the shorter by the time required to travel the extra length. If we know the frequency we can determine whether this 'time difference' corresponds to a whole number of periods; if so the ends will oscillate in phase **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:52:27 General College Physics and Principles of Physics 11.38: AM 550-1600 kHz, FM 88-108 mHz. What are the wavelength ranges?
......!!!!!!!!...................................
RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. Always critique your solutions by describing any insights you had or errors you makde, and by explaining how you can make use of the insight or how you now know how to avoid certain errors. Also pose for the instructor any question or questions that you have related to the problem or series of problems. ok
.................................................
......!!!!!!!!...................................
17:52:36 At 3 * 10^8 m/s: a frequency of 550 kHz = 550 * 10^3 Hz = 5.5 * 10^5 Hz will correspond to a wavelength of 3 * 10^8 m/s / (5.5 * 10^5 cycles / sec) = 545 meters. a frequency of 1600 kHz = 1.6* 10^6 Hz will correspond to a wavelength of 3 * 10^8 m/s / (1.6 * 10^6 cycles / sec) =187 meters. The wavelengths for the FM range are calculated similarly. a frequency of 88.0 mHz= 88.0 * 10^6 Hz = 8.80 * 10^7 Hz will correspond to a wavelength of 3 * 10^8 m/s / (8.80 * 10^7 cycles / sec) = 3.41 meters. The 108 mHz frequency is calculated similarly and corresponds to a wavelength of 2.78 meters.
......!!!!!!!!...................................
RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. Always critique your solutions by describing any insights you had or errors you makde, and by explaining how you can make use of the insight or how you now know how to avoid certain errors. Also pose for the instructor any question or questions that you have related to the problem or series of problems. ok
.................................................
......!!!!!!!!...................................
17:52:53 General College Physics and Principles of Physics 11.52: What are the possible frequencies of a violin string whose fundamental mode vibrates at 440 Hz?
......!!!!!!!!...................................
RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. Always critique your solutions by describing any insights you had or errors you makde, and by explaining how you can make use of the insight or how you now know how to avoid certain errors. Also pose for the instructor any question or questions that you have related to the problem or series of problems. sounds like i will be able to do that
.................................................
......!!!!!!!!...................................
17:53:10 The fundamental mode for a string fixed at both ends fits half a wavelength onto the string and therefore has a wavelength equal to double its length. The next three harmonics fit 2, 3 and 4 half-wavelengths into the length of the string and so have respectively 2, 3 and 4 times the frequency of the fundamental. So the first 4 harmonics are fundamental frequency = 440 Hz First overtone or second harmonic frequency = 2 * 440 Hz = 880 Hz Second overtone or third harmonic frequency = 3 * 440 Hz = 1320 Hz Third overtone or fourth harmonic frequency = 4 * 440 Hz = 1760 Hz
......!!!!!!!!...................................
RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. Always critique your solutions by describing any insights you had or errors you makde, and by explaining how you can make use of the insight or how you now know how to avoid certain errors. Also pose for the instructor any question or questions that you have related to the problem or series of problems alrighty then .
.................................................
......!!!!!!!!...................................
17:53:26 General College Physics Problem: Earthquake intensity is 2.0 * 10^6 J / (m^2 s) at 48 km from the source. What is the intensity at 1 km from the source?
......!!!!!!!!...................................
RESPONSE --> Ok I will be able to do that one
.................................................
......!!!!!!!!...................................
17:53:53 General College Physics Problem: Earthquake intensity is 2.0 * 10^6 J / (m^2 s) at 48 km from the source. What is the intensity at 1 km from the source?
......!!!!!!!!...................................
RESPONSE --> The wave is assumed spherical so its surface area increases as the square of its distance and its intensity, which is power / surface area, decreases as the square of the distance. So the intensity at 1 km will be (48 km / 1 km)^2 = 2300 times as great, or 2300 * 2.0 * 10^6 J / (m^2 s) = 4.6 * 10^9 J/(m^2 s).
.................................................
......!!!!!!!!...................................
17:54:10 The wave is assumed spherical so its surface area increases as the square of its distance and its intensity, which is power / surface area, decreases as the square of the distance. So the intensity at 1 km will be (48 km / 1 km)^2 = 2300 times as great, or 2300 * 2.0 * 10^6 J / (m^2 s) = 4.6 * 10^9 J/(m^2 s).
......!!!!!!!!...................................
RESPONSE --> ok.
.................................................
......!!!!!!!!...................................
17:54:46 At what rate did energy pass through a 5.0 m^2 area at the 1 km distance?
......!!!!!!!!...................................
RESPONSE --> Through a 5 m^2 area the rate of energy passage is therefore 4.6 * 10^9 J / (m^2 s) * 5.0 m^2 = 2.3 * 10^10 J / s, or 23 billion watts.
.................................................
......!!!!!!!!...................................
17:55:03 Through a 5 m^2 area the rate of energy passage is therefore 4.6 * 10^9 J / (m^2 s) * 5.0 m^2 = 2.3 * 10^10 J / s, or 23 billion watts.
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
"