Assignment 8

#$&*

course MTH 151

02/25/2014 at 12:24

If your solution to stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

008. Arithmetic Sequences

*********************************************

Question: `q001. There are 8 questions in this set.

See if you can figure out a strategy for quickly adding the numbers 1 + 2 + 3 + ... + 100, and give your result if you are successful. Don't spend more than a few minutes on your attempt.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1+100=101

Then, mulitply number of pairs (50) by 101, getting 50*101=5050.

confidence rating #$&*: 3.

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

These numbers can be paired as follows:

1 with 100,

2 with 99,

3 with 98, etc..

There are 100 number so there are clearly 50 pairs. Each pair adds up to the same thing, 101. So there are 50 pairs each adding up to 101. The resulting sum is therefore

total = 50 * 101 = 5050.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q002. See if you can use a similar strategy to add up the numbers 1 + 2 + ... + 2000.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1+2000=2001

There are 1000 pairs, so the equation will be 1000*2001=2,001,000.

confidence rating #$&*: 3.

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Pairing 1 with 2000, 2 with 1999, 3 with 1998, etc., and noting that there are 2000 numbers we see that there are 1000 pairs each adding up to 2001.

So the sum is 1000 * 2001 = 2,001,000.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q003. See if you can devise a strategy to add up the numbers 1 + 2 + ... + 501.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1+501=502

Then, find the number of pairs, which is 501/2=250.5

502*250.5=125,751.

confidence rating #$&*: 3.

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

We can pair 1 with 501, 2 with 500, 3 with 499, etc., and each pair will have up to 502. However there are 501 numbers, so not all of the numbers can be paired. The number in the 'middle' will be left out.

However it is easy enough to figure out what that number is, since it has to be halfway between 1 and 501. The number must be the average of 1 and 501, or (1 + 501) / 2 = 502 / 2 = 251. Since the other 500 numbers are all paired, we have 250 pairs each adding up to 502, plus 251 left over in the middle.

The sum is 250 * 502 + 251 = 125,500 + 251 = 125,751.

Note that the 251 is half of 502, so it's half of a pair, and that we could therefore say that we effectively have 250 pairs and 1/2 pair, or 250.5 pairs.

250.5 is half of 501, so we can still calculate the number of pairs by dividing the total number of number, 501, by 2.

The total sum is then found by multiplying this number of pairs by the sum 502 of each pair:

250.5 * 502 = 125,766.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

???????? I have the same equation, but got a different answer. 250.5*502=125,751.

------------------------------------------------

Self-critique Rating:

@&

Your answer is correct.

*@

*********************************************

Question: `q004. Use this strategy to add the numbers 1 + 2 + ... + 1533.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1+1533=1534

Then, find the number of pairs. 1533/2=766.5

1534*766.5=1,175,811

confidence rating #$&*: 3.

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Pairing the numbers, 1 with 1533, 2 with 1532, etc., we get pairs which each adult to 1534. There are 1533 numbers so there are 1533 / 2 = 766.5 pairs. We thus have a total of 1534 * 766.5, whatever that multiplies out to (you've got a calculator, and I've only got my unreliable head).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q005. Use a similar strategy to add the numbers 55 + 56 + ... + 945.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

55+945=1000

Then, find the number of pairs. 945-55=890+1. 891/2=445.5 pairs.

1000*445.5=445,500

confidence rating #$&*: 3.

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

We can pair up 55 and 945, 56 and 944, etc., obtaining 1000 for each pair. There are 945 - 55 + 1 = 891 numbers in the sum (we have to add 1 because 945 - 55 = 890 tells us how many 1-unit 'jumps' there are between 55 and 945--from 55 to 56, from 56 to 57, etc.. The first 'jump' ends up at 56 and the last 'jump' ends up at 945, so every number except 55 is the end of one of the 890 'jumps'. But 55 is included in the numbers to be summed, so we have 890 + 1 = 891 numbers in the sum).

If we have 891 numbers in the sum, we have 891/2 = 445.5 pairs, each adding up to 1000.

So we have a total of 445.5 * 1000 = 445,500.

STUDENT COMMENT

I got very confused on this one. I don’t quite understand why you add a 1.

INSTRUCTOR RESPONSE

For example, how many numbers are there in the sum 5 + 6 + 7 + ... + 13 + 14 + 15?

15 - 5 = 10.

However there are 11 numbers in the sum (5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q006. Devise a strategy to add the numbers 4 + 8 + 12 + 16 + ... + 900.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

900+4=904

Find the number of pairs: 900-4+1=897; 897/2=448.5

904*448.5=405,444

confidence rating #$&*: ????1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Pairing 4 with 900, 8 with 896, etc., we get pairs adding up to 904. The difference between 4 and 900 is 896.

The numbers 'jump' by 4, so there are 896 / 4 = 224 'jumps'. None of these 'jumps' ends at the first number so there are 224 + 1 = 225 numbers.

Thus we have 225 / 2 = 112.5 pairs each adding up to 904, and our total is 112.5 * 904.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

????????

I got the premise of how to do the equation, but I don't get the ""jumps"". Why did you do this in this problem and not the 945 problem? Please explain.

@&

This sum skips three integers between each number in the sum and the next. Instead of 4+5+6+7+8+9+... you have just 4 + 8 + 12 + ... .

The numbers 'jump' form 4 to 8 to 12 etc. without including the numbers in between. This results in fewer pairs.

If you pair up the numbers in the sum

4+5+6+7+8+9+10+11+12

each pair adds up to 16, and since there are 9 numbers you have 4.5 pairs.

If you pair up the numbers in

4 + 8 + 12

each pair adds up to 16 and you have 1.5 pairs.

*@

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q007. What expression would stand for the sum 1 + 2 + 3 + ... + n, where n is some whole number?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(1+n)(n/2)

confidence rating #$&*: 3.

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

We can pair 1 and n, 2 and n-1, 3 and n-2, etc., in each case obtaining a sum of n + 1. There are n numbers so there are n/2 pairs, each totaling n + 1. Thus the total is n/2 * (n+1).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q008. What are the following two sums?

50 + 51 + 52 + ... + 998 + 999 + 1000

3 + 6 + 9 + ... + 300

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

50+100=1050

Then, find the number of pairs: 1000-50+1=951; 951/2=475.5

475.5*1050=499,275

@&

Good.

*@

--------

3+300=303

Then, find the number of pairs: 1050-50=1000; 1000/3=333.3

333.3+1=334.3; 333.3/2=167.15

303*167.15=50,646.45

@&

To get to 300 from 3, counting by 3's, you need to start at 3, then make enough 'jumps' of 3 to get to 300.

From 3 to 300 is a span of 297, so you need 297 / 3 = 99 'jumps' of 3.

You started with the number 3, and you 'jumped' 99 times, each time getting a new number. So there are 100 numbers in the sequence.

It follows that there are 50 pairs, each adding up to 303.

Another way to see that there are 100 numbers in the sum:

If you divide each of the numbers from 3 to 300 by 3, you get the numbers from 1 to 100. So there are 100 numbers in the sum.

*@

confidence rating #$&*:??????1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

------------------------------------------------

Self-critique Rating:

???????? I'm still having trouble knowing what to do with the ""jumps"". Please explain in detail. Thank you !!"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

???????? I'm still having trouble knowing what to do with the ""jumps"". Please explain in detail. Thank you !!"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Good responses. See my notes and let me know if you have questions. &#