#$&* course MTH 151 04/05/2014 at 2:28Professor,
.............................................
Given Solution: It is possible that p is true and q is true. Another possibility is that p is true and q is false. A third possibility is that p is false and q is true. A fourth possibility is that p is false and q is false. These possibilities can be listed as TT, TF, FT and FF, where it is understood that the first truth value is for p and the second for q. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q002. For each of the for possibilities TT, TF, FT and FF, what is the truth value of the compound statement p ^ q ? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Referring to the truth table for ^ (and); TT=T, TF=F, FT=F, FF=F. So, only if p is true and q is true, will the statement be true. confidence rating #$&*: 3. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: p ^ q means 'p and q', which is only true if both p and q are true. In the case TT, p is true and q is true so p ^ q is true. In the case TF, p is true and q is false so p ^ q is false. In the case FT, p is false and q is true so p ^ q is false. In the case FF, p is false and q is false so p ^ q is false. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q003. Write the results of the preceding problem in the form of a truth table. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: As I used in the previous problem: p q | p^q T T | T T F | F F T | F F F | F confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The truth table must have headings for p, q and p ^ q. It must include a line for each of the possible combinations of truth values for p and q. The table is as follows: p q p ^ q T T T T F F F T F F F F. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: 3. ********************************************* Question: `q004. For each of the possible combinations TT, TF, FT, FF, what is the truth value of the proposition p ^ ~q? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The problem will read “p and the negation of q”. So, TT (p is true and q is true, so ~q is false), so TT will become TF, which is false. TF (p is true and q is false, so ~q is true), so TF will become TT, which is true. FT (p is false and q is true, so ~q is false), so FT will become FF, which is false. FF (p is false and q is false, so ~q is true), so FF will become FT, which is false. confidence rating #$&*: 3. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: For TT we have p true, q true so ~q is false and p ^ ~q is false. For TF we have p true, q false so ~q is true and p ^ ~q is true. For FT we have p false, q true so ~q is false and p ^ ~q is false. For FF we have p false, q false so ~q is true and p ^ ~q is false. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q005. Give the results of the preceding question in the form of a truth table. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: p q ~q | p^~q T T F | F T F T | T F T F | F F F T | F confidence rating #$&*: 3. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The truth table will have to have headings for p, q, ~q and p ^ ~q. We therefore have the following: p q ~q p^~q T T F F T F T T F T F F F F T F &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q006. Give the truth table for the proposition p U q, where U stands for disjunction. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: p q | pUq T T | T T F | T F T | T F F | F confidence rating #$&*: 3. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: p U q means 'p or q' and is true whenever at least one of the statements p, q is true. Therefore p U q is true in the cases TT, TF, FT, all of which have at least one 'true', and false in the case FF. The truth table therefore reads p q p U q T T T T F T F T T F F F &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q007. Reason out the truth values of the proposition ~(pU~q). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: p q ~q | pU~q ~(pU~q) T T F | T F T F T | T F F T F | F T F F T | T F So, p is false and q is true makes ~(pU~q) true. confidence rating #$&*: 3. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: In the case TT p is true and q is true, so ~q is false. Thus p U ~q is true, since p is true. So ~(p U ~q) is false. In the case TF p is true and q is false, so ~q is true. Thus p U ~q is true, since p is true (as is q). So ~(p U ~q) is false. In the case FT p is false and q is true, so ~q is false. Thus p U ~q is false, since neither p nor ~q is true. So ~(p U ~q) is true. In the case FF p is false and q is false, so ~q is true. Thus p U ~q is true, since ~q is true. So ~(p U ~q) is false. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q008. Construct a truth table for the proposition of the preceding question. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: p q ~q | pU~q ~(pU~q) T T F | T F T F T | T F F T F | F T F F T | T F confidence rating #$&*: 3. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: We need headings for p, q, ~q, p U ~q and ~(p U ~q). Our truth table therefore read as follows: p q ~q pU~q ~(pU~q) T T F T F T F T T F F T F F T F F T T F &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q009. Construct a truth table for the statement (p ^ ~q). (p^~q) is p and ~q p q ~q | (p^~q) T T F | F T F T | T F T F | F F F T | F If p is true and q is false (which means ~q is true), then (p^~q) is true. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 3. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ********************************************* Question: `q010. Construct a truth table for the statement q U (p ^ ~q). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I used my table from the previous problem first: p q ~q | (p^~q) p U (p^~q) T T F | F T T F T | T T F T F | F F F F T | F F Or means at least one part of the problem has to be true. TF=T, TT=T, FF=F, FF=F.