orientation volumes

#$&*

course mth 174

4/12 8:40 pm

002. Volumes

*********************************************

Question: `q001. There are 9 questions and 4 summary questions in this assignment.

What is the volume of a rectangular solid whose dimensions are exactly 3 meters by 5 meters by 7 meters?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To find the volume of a rectangular solid you multiply the 3 measurements that make up the dimension so you have 3meters*5 meters*7 meters which gives you 105 meters cubed.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aIf we orient this object so that its 3 cm dimension is its 'height', then it will be 'resting' on a rectangular base whose dimension are 5 cm by 7 cm. This base can be divided into 5 rows each consisting of 7 squares, each 1 meter by 1 meter. There will therefore be 5 * 7 = 35 such squares, showing us that the area of the base is 35 m^2.

Above each of these base squares the object rises to a distance of 3 meters, forming a small rectangular tower. Each such tower can be divided into 3 cubical blocks, each having dimension 1 meter by 1 meter by 1 meter. The volume of each 1-meter cube is 1 m * 1 m * 1 m = 1 m^3, also expressed as 1 cubic meter. So each small 'tower' has volume 3 m^3.

The object can be divided into 35 such 'towers'. So the total volume is 35 * 3 m^3 = 105 m^3.

This construction shows us why the volume of a rectangular solid is equal to the area of the base (in this example the 35 m^2 of the base) and the altitude (in this case 3 meters). The volume of any rectangular solid is therefore

V = A * h,

where A is the area of the base and h the altitude.

This is sometimes expressed as V = L * W * h, where L and W are the length and width of the base. However the relationship V = A * h applies to a much broader class of objects than just rectangular solids, and V = A * h is a more powerful idea than V = L * W * h. Remember both, but remember also that V = A * h is the more important.

STUDENT QUESTION

I guess I am confused at what the length and the width are???? I drew a rectangle I made the top length 5

and the bottom lenghth 7 then the side 3. So the 7 and the 5 are both width and the 3 is the height??????

INSTRUCTOR RESPONSE

You can orient this object in any way you choose. The given solution orients it so that the base is 5 cm by 7 cm. The area of the base is then 35 cm^2. In this case the third dimension, 3 cm, is the height and we multiply the area of the base by the height to get 105 cm^3.

Had we oriented the object so that it rests on the 3 cm by 5 cm rectangle, the area of the base would be 15 cm^2. The height would be the remaining dimension, 7 cm. Multiplying the base by the height we would be 15 cm^2 * 7 cm = 105 cm^3.

We could also orient the object so its base is 3 cm by 7 cm, with area 21 cm^2. Multiplying by the 5 cm height we would again conclude that the volume is 105 cm^3.

All these results can be visualized in terms of 1-cm squares and 1-cm cubes, as explained in the given solution.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

### I used logic to determine my answer and got the correct answer, is my answer acceptable??? Also the original problem has a unit of meters not centimeters am I missing something???

------------------------------------------------

Self-critique Rating:3

@&

You're not missing anything. Just a disconnect between problem statement and editing of solution, which I've decided not to fix just to see who is paying close attention.

You are.

*@

*********************************************

Question: `q002. What is the volume of a rectangular solid whose base area is 48 square meters and whose altitude is 2 meters?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The formula for finding the volume of a rectangular solid is area times height. So if we know the area of the base is 48 meters squared and the altitude is 2 meter, then by multiplying these 2 we get 96 meters cubed.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aUsing the idea that V = A * h we find that the volume of this solid is

V = A * h = 48 m^2 * 2 m = 96 m^3.

Note that m * m^2 means m * (m * m) = m * m * m = m^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q003. What is the volume of a uniform cylinder whose base area is 20 square meters and whose altitude is 40 meters?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To find the volume of a cylinder we use the formula volume = area x height so 20 meters squared by 40 meters = 800 meters cubed.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aV = A * h applies to uniform cylinders as well as to rectangular solids. We are given the altitude h and the base area A so we conclude that

V = A * h = 20 m^2 * 40 m = 800 m^3.

The relationship V = A * h applies to any solid object whose cross-sectional area A is constant. This is the case for uniform cylinders and uniform prisms.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q004. What is the volume of a uniform cylinder whose base has radius 5 cm and whose altitude is 30 cm?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

We are given the radius of a cylinder and we know the formula is V=A*height. To find the area of the base of a cylinder which is a circle shape we use the formula A=pi*r^2 which would be 3.1416*5^2 which is 78.54 cm squared. Now we take 78.54 cm squared and multiply by the height of 30 cm to get 2,356.2 cm cubed.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe cylinder is uniform, which means that its cross-sectional area is constant. So the relationship V = A * h applies.

The cross-sectional area A is the area of a circle of radius 5 cm, so we see that A = pi r^2 = pi ( 5 cm)^2 = 25 pi cm^2.

Since the altitude is 30 cm the volume is therefore

V = A * h = 25 pi cm^2 * 30 cm = 750 pi cm^3.

Note that the common formula for the volume of a uniform cylinder is V = pi r^2 h. However this is just an instance of the formula V = A * h, since the cross-sectional area A of the uniform cylinder is pi r^2. Rather than having to carry around the formula V = pi r^2 h, it's more efficient to remember V = A * h and to apply the well-known formula A = pi r^2 for the area of a circle.

STUDENT QUESTION

why do we not calculate the pi times the radius and then the height or calculate the pi after the height

why do we just leave the pi in the answer?

INSTRUCTOR RESPONSE

pi cannot be written exactly in decimal form; it's an irrational number and any decimal representation is going to have round-off error.

750 pi cm^3 is the exact volume of a cylinder with radius 5 cm and altitude 30 cm.

750 pi is approximately 2356. However 2356 has two drawbacks:

• 2356 is a 4-significant-figure approximation of 750 pi. It's not exact. This might or might not be a disadvantage, but we're better off expressing the result as a multiple of pi, which we can then calculate to any desired degree of precision, than in using 2356, which already contains a roundoff error.

• It's hard to look at 2356 and see how it's related to 5 and 30. You probably can't calculate that in your head. However it's not difficult to see that 30 * 5^2 is 30 * 25 or 750.

When in doubt, we use the exact expression rather than the approximation. It's fine to give an answer like the following:

The volume is 750 pi cm^3, which is approximately 2356 cm^3.

STUDENT QUESTION

I should have stated that my answer was an approximate. ???? When using pi, should I calculate this out or just leave pi in the solution?

INSTRUCTOR RESPONSE

I would say to do both when in doubt.

If the given dimensions are known to be approximate, and when the numbers aren't simple in the first place, it's appropriate to just multiply everything out and use an appropriate number of significant figures.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

### I used the value of pi as 3.1416 and see now that it is better to leave the expression as pi rather than evaluating pi as a number. I got the steps right I just used the number value of pi instead of leaving pi in the answer.

------------------------------------------------

Self-critique Rating:3

@&

When in doubt it's best to express the result as a multiple of pi.

If the dimensions are understood to be measured dimensions, which can never be exact, vs. ideal exact dimensions, then you're OK with an approximation, provided you use a value of pi that is commensurate with the accuracy of the dimensions.

In this case a measured dimension expressed as 5 cm would indicate a single significant figure of resolution, so p = 3 would technically be sufficient.

*@

*********************************************

Question: `q005. Estimate the dimensions of a metal can containing food. What is its volume, as indicated by your estimates?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I measured a can of corn and it had a diameter of 3.1 inches and a height of 5.2 inches. I rounded these because we were asked to estimate. So I have 3 inches as the base and 5 inches as the height. WE know that volume = area * height. To find the area we use the formula area = pi *r squared. So we halve the diameter to find the radius 3/2 = 1.5 inches. So the area is pi*1.5^2 or 2.25pi inches squared. So to find the volume we multiply 2.25 pi inches squared by the height of 5 inches and get 11.25pi cubic inches as the volume.

@&

You were in doubt, so you expressed the result as a multiple of pi, which is always OK.

Regarding significant figures, your original measurements were all accurate to within 2 significant figures, a 2-significant-figure result would have been appropriate. If your numbers were rounded to the nearest whole number, which would be fine for this problem, a 1-significant-figure result of 10 pi cubic inches, or 30 cubic inches, would be appropriate.

*@

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aPeople will commonly estimate the dimensions of a can of food in centimeters or in inches, though other units of measure are possible (e.g., millimeters, feet, meters, miles, km). Different cans have different dimensions, and your estimate will depend a lot on what can you are using.

A typical can might have a circular cross-section with diameter 3 inches and altitude 5 inches. This can would have volume V = A * h, where A is the area of the cross-section. The diameter of the cross-section is 3 inches so its radius will be 3/2 in.. The cross-sectional area is therefore A = pi r^2 = pi * (3/2 in)^2 = 9 pi / 4 in^2 and its volume is

V = A * h = (9 pi / 4) in^2 * 5 in = 45 pi / 4 in^3.

Approximating, this comes out to around 35 in^3.

Another can around the same size might have diameter 8 cm and height 14 cm, giving it cross-sectional area A = pi ( 4 cm)^2 = 16 pi cm^2 and volume V = A * h = 16 pi cm^2 * 14 cm = 224 pi cm^3.

STUDENT QUESTION

Should my in^3 come after the total solution even though it is associated with the 9? As in your example the in^3 is

associated with 224 but you have it at the end of the solution.

INSTRUCTOR RESPONSE

I wouldn't be picky at this point of the course, but the generally used order has the numbers first and the units last.

This is what most readers will expect. It's a lot like using good grammar, which makes everything easier to understand.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

### I think my answer is correct, I left pi in the solution???

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `q006. What is the volume of a pyramid whose base area is 50 square cm and whose altitude is 60 cm?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I honestly have to say I am not sure at all how to do this problem without looking at the solution first, which we are not supposed to do. I know you couldn’t use the formula volume = area * height and I know a pyramid is a triangle but I only know how to find the area of a triangle, not the volume.

confidence rating #$&*:1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aWe can't use the V = A * h idea for a pyramid because the thing doesn't have a constant cross-sectional area--from base to apex the cross-sections get smaller and smaller. It turns out that there is a way to cut up and reassemble a pyramid to show that its volume is exactly 1/3 that of a rectangular solid with base area A and altitude h. Think of putting the pyramid in a box having the same altitude as the pyramid, with the base of the pyramid just covering the bottom of the box. The apex (the point) of the pyramid will just touch the top of the box. The pyramid occupies exactly 1/3 the volume of that box.

So the volume of the pyramid is V = 1/3 * A * h. The base area A is 50 cm^2 and the altitude is 60 cm so we have

V = 1/3 * 50 cm^2 * 60 cm = 1000 cm^3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

### Your explanation of visualizing a pyramid in a rectangular box and seeing the pyramid fills up a third of that box makes sense. I understand that you could now use the volume = area * height and divide by 3 to represent 1/3 of the volume of the rectangular box.

------------------------------------------------

Self-critique Rating:3

@&

Good.

By the middle of the Mth 174 course you'll also know how to arrive at this formula using integration.

*@

*********************************************

Question: `q007. What is the volume of a cone whose base area is 20 square meters and whose altitude is 9 meters?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

From studying the previous problem I envision the cone in a cylinder and see that it would fill a third of the cylinder. So I find the volume of the cylinder which is area * height and divide my answer by 3. So 20 meters squared by 9 meters = 180 meters cubed divided by 3 = 60 meters cubed for the volume of a cone.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 3

`aJust as the volume of a pyramid is 1/3 the volume of the 'box' that contains it, the volume of a cone is 1/3 the volume of the cylinder that contains it. Specifically, the cylinder that contains the cone has the base of the cone as its base and matches the altitude of the cone. So the volume of the cone is 1/3 A * h, where A is the area of the base and h is the altitude of the cone.

In this case the base area and altitude are given, so the volume of the cone is

V = 1/3 A * h = 1/3 * 20 m^2 * 9 m = 60 m^3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q008. What is a volume of a sphere whose radius is 4 meters?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The volume of sphere is 4/3*pi*radius cubed. So to find this volume we say 4/3*pi*4*4*4 which is 256pi/3 meters cubed.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe volume of a sphere is V = 4/3 pi r^3, where r is the radius of the sphere. In this case r = 4 m so

V = 4/3 pi * (4 m)^3 = 4/3 pi * 4^3 m^3 = 256/3 pi m^3.

STUDENT QUESTION:

How does a formula come up with multiplying by pi? I understand how to work a formula, but don’t know how to

calculate the formula. Does that make sense?

INSTRUCTOR RESPONSE: It makes perfect sense to ask that question.

However the answer is beyond the scope of your course.

(one answer, which will not make sense to anyone until at least the midway point of their third semester of a challenging calculus sequence, is that the volume of a sphere of radius R is the integral of rho^2 sin (phi) cos(theta) from rho = 0 to R, phi from 0 to pi and theta from 0 to 2 pi; also the surface area of a sphere of radius R is double the double integral of r / secant(theta), integrated in polar coordinates from r = 0 to R and theta from 0 to 2 pi) .

(there is another way of figuring this out using solid geometry, a topic with which few students are familiar).

In other words, at this point your best recourse is to just learn the formulas.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Ok ## although I had to look in an old math book to find the formula.

------------------------------------------------

Self-critique Rating:

@&

OK.

By the middle of the semester you'll also know how to find the volume of a sphere by integration.

*@

*********************************************

Question: `q009. What is the volume of a planet whose diameter is 14,000 km?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

A planet is a sphere so you use the formula for volume = 4/3*pi*radius cubed . the diameter is 14000 so the radius is half of this which is 7,000 km. so you would have 4/3*pi*7000*7000*7000 which is 1,372,000,000,000/3 pi km cubed.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe planet is presumably a sphere, so to the extent that this is so the volume of this planet is V = 4/3 pi r^3, where r is the radius of the planet. The diameter of the planet is 14,000 km so the radius is half this, or 7,000 km. It follows that the volume of the planet is

V = 4/3 pi r^3 = 4/3 pi * (7,000 km)^3 = 4/3 pi * 343,000,000,000 km^3 = 1,372,000,000,000 / 3 * pi km^3.

This result can be approximated to an appropriate number of significant figures.

STUDENT QUESTION

How did we go from 343,000,000,000 to 1,372,000,000,000?

INSTRUCTOR RESPONSE

We go from 4/3 pi * 343,000,000,000 to 1,372,000,000,000 / 3 * pi by multiplying 343 000 000 000 by 4. Like a lot of thing, this is fairly obvious once you see it, hard to see until you do.

Let me know if after thinking about it for a few minutes, then if necessary giving it a rest for awhile (say, a day) and coming back to it, you don't see it.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q010. Summary Question 1: What basic principle do we apply to find the volume of a uniform cylinder of known dimensions?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If the cylinder has a same uniform cross section the formula for finding the volume is multiplying area by the height.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe principle is that when the cross-section of an object is constant, its volume is V = A * h, where A is the cross-sectional area and h the altitude. Altitude is measure perpendicular to the cross-section.

STUDENT QUESTION

What does it mean “when the cross-section of an object is constant”? When would it not be

constant?

INSTRUCTOR RESPONSE

For example the cross-sectional area of a cone, which tapers, is not constant; nor is the cross-sectional area of a sphere.

STUDENT QUESTION

And why is altitude measured perpendicular to the cross-section?

INSTRUCTOR RESPONSE

This is for essentially the same reason the altitude of a parallelogram is measured perpendicular to its base.

If you imagine nailing four sticks together to make a rectangle, then imagine partially 'collapsing' the rectangle into a parallelogram, you will see that the altitude of the resulting parallelogram is less than that of the original rectangle, and its area is correspondingly less.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q011. Summary Question 2: What basic principle do we apply to find the volume of a pyramid or a cone?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

When we want to find the volume of a pyramid we envision it in a rectangular box and realize it fills 1/3 of the box so we find the volume by using A*h/3. For a cone we envision it inside of a cylinder and realize it fills up 1/3 so we find the volume by using A*H/3.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe volumes of these solids are each 1/3 the volume of the enclosing figure. Each volume can be expressed as V = 1/3 A * h, where A is the area of the base and h the altitude as measured perpendicular to the base.

STUDENT QUESTION

I thought I had the right idea but I got lost. I’m not sure how to handle the square roots,

even after reading the solution, I am confused about this one.

INSTRUCTOR RESPONSE

Think of a simple example, the equation x^2 = 25.

It should be clear that x = 5 is a solution to this equation, as is x = -5.

Now 5 is the square root of 25, since 25 is the square of 5. In notation, the same sentence would read

5 = sqrt(25) since 25 = 5^2.

So the solutions to this equation are x = sqrt(25) and x = -sqrt(25). We often write that as x = +- sqrt(25), where the '+-' means 'plus or minus'.

More generally, if c is any positive number, the equation x^2 = c has solutions x = +- sqrt(c).

Now sometimes only one of the two solutions makes sense.

In the present problem A radius is a distance, and a distance can't be negative. So after finding the two solutions, we discard the negative solution. However we always find both solutions before discarding everything, in order to make sure we don't throw out something important

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q012. Summary Question 3: What is the formula for the volume of a sphere?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The formula for finding the volume of a spehere is 4/3*pi*radius cubed

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe volume of a sphere is V = 4/3 pi r^3, where r is the radius of the sphere.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q012. Summary Question 3: What is the formula for the volume of a sphere?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The formula for finding the volume of a spehere is 4/3*pi*radius cubed

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe volume of a sphere is V = 4/3 pi r^3, where r is the radius of the sphere.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

#*&!

@&

Your work is very good.

I've included some notes related to significant figures.

Significant figures are a pretty crude rule of thumb. A more precise way of determining the accuracy of a result relies on differentials, which you would have studied in first-semester calculus but probably not within this context.

*@

*********************************************

Question: `q012. Summary Question 3: What is the formula for the volume of a sphere?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The formula for finding the volume of a spehere is 4/3*pi*radius cubed

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe volume of a sphere is V = 4/3 pi r^3, where r is the radius of the sphere.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

#*&!

@&

Your work is very good.

I've included some notes related to significant figures.

Significant figures are a pretty crude rule of thumb. A more precise way of determining the accuracy of a result relies on differentials, which you would have studied in first-semester calculus but probably not within this context.

*@

#*&!