Query 002

#$&*

course PHY 232

4/9/2011; 19:00

If your solution to stated problem does not match the given solution, you should self-critique per instructions athttp://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

Your solution, attempt at solution:

If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

002. `query 2

*********************************************

Question: from Introductory Problem Set 5 # 12: Finding the conductivity given rate of energy flow, area, temperatures, thickness of wall.

Describe how we find the conductivity given the rate of energy flow, area, temperatures, and thickness of the wall.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

Energy flow/ (area*gradient T)

Where the gradient T = `dT/thickness of the wall

Fundamental-ish units are simplified as follows:

Watts / (m^2*degrees C /m) = Watts/ (m*degrees C)

Watts are J/s = N * m / s

=> N/ (t*Celsius)

=kg*m/(s^3*Celsius)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The rate at which thermal energy is conducted across for an object made of a given substance is proportional to the temperature gradient (the rate at which temperature changes across the object), and to the cross-sectional area of the object.

The conductivity is the constant of proportionality for the given substance. So we have the proportionality equation

• rate of thermal energy conduction = conductivity * temperature gradient * area, or in symbols

• R = k * (`dT/`dx) * A.

(note: R is the rate at which thermal energy Q is transferred with respect to clock time t. Using the definition of rate of change, we see that the average rate over a time interval is `dQ / `dt, and the instantaneous rate is dQ / dt. Either expression may be used in place of R, as appropriate to the situation.)

For an object of uniform cross-section, `dT is the temperature difference across the object and `dx is the distance between the faces of the object. The distance `dx is often denoted L. Using L instead of `dx, the preceding proportionality can be written

• R = k * `dT / L * A

We can solve this equation for the proportionality constant k to get

• k = R * L / (`dT * A).

(alternatively this may be expressed as k = `dQ / `dt * L / (`dT * A), or as k = dQ/dt * L / (`dT * A)).

STUDENT COMMENT

I really cannot tell anything from this given solution. I don’t see where the single, solitary answer is.

INSTRUCTOR RESPONSE

The key is the explanation of the reasoning, more than the final answer, though both are important.

However the final answer is given as k = R * L / (`dT * A), where as indicated in the given solution we use L instead of `dx. Two alternative answers are also given.

Your solution was

'Well, according to the information given in the Introductory Problem Set 5, finding thermal conductivity (k)

can be determined by using k = (‘dQ / ‘dt) / [A(‘dT / ‘dx)].'

The given expressions are equivalent to your answer. If you replace `dx by L, as in the given solution, and simplify you will get one of the three given forms of the final expression.

However note that you simply quoted and equation here (which you did solve correctly, so you didn't do badly), and gave no explanation or indication of your understanding of the reasoning process.

Your Self-Critique: This makes perfect sense, however I did not explain the calc. perspective and though I did not write it in symbols instead I used words.

Your Self-Critique Rating:

*********************************************

Question: Explain in terms of proportionality how thermal energy flow, for a given material, is affected by area (e.g., is it proportional to area, inversely proportional, etc.), thickness and temperature gradient.

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution: Thermal conductivity is proportional to area, the Temp. gradient and inversely proportional to thickness.

R = k*gradient (T) * A

The reason for the inverse relation of length is it lies in the denominator of the T gradient => as the length doubles the T gradient halves and thus the conductivity halves.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** CORRECT STUDENT ANSWER WITHOUT EXPLANATION:

Energy flow is:

• Directly proportional to area

• Inversely proportional to thickness and

• Directly proportional to temperature gradient

Good student answer, slightly edited by instructor:

The energy flow for a given object increases if the cross-sectional area (i.e., the area perpendicular to the direction of energy flow) increases. Intuitively, this is because the more area you have the wider the path available so more stuff can move through it. By analogy a 4 lane highway will carry more cars in a given time interval than will a two lane highway. In a similar manner, energy flow is directly proportional to cross-sectional area.

Temperature gradient is the rate at which temperature changes with respect to position as we move from one side of the material to the other. That is, temperature gradient is the difference in temperature per unit of distance across the material:

• Temperature gradient is `dT / `dx.

(a common error is to interpret temperature gradient just as difference in temperatures, rather than temperature difference per unit of distance).

For a given cross-sectional area, energy flow is proportional to the temperature gradient. If the difference in the two temperatures is greater then the energy will move more quickly from one side to the other.

For a given temperature difference, greater thickness `dx implies smaller temperature gradient `dT / `dx. The temperature gradient is what 'drives' the energy flow. Thus

greater thickness implies a lesser temperature gradient

the lesser temperature gradient implies less energy flow (per unit of cross-sectional area) per unit of time and we can say that

the rate of energy flow (with respect to time) is inversely proportional to the thickness.

Your Self-Critique:ok

Your Self-Critique Rating:3

*********************************************

Question: principles of physics and general college physics 13.8: coeff of expansion .2 * 10^-6 C^-1, length 2.0 m. What is expansion along length if temp increases by 5.0 C?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

The soln is the coefficient*L_0*`dT = .2E-6 m/(degree C * m) *2m*5degrees C = 2 E-6m

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

This problem is solved using the concept of a coefficient of expansion.

The linear coefficient of thermal expansion of a material, denoted alpha, is the amount of expansion per unit of length, per unit of temperature:

• expansion per unit of length is just (change in length) / (original length), i.e.,

• Expansion per unit of length = `dL / L0

Thus expansion per unit of length, per unit of temperature is (expansion per unit of length) / `dT. Denoting this quantity alpha we have

• alpha = (`dL / L0) / `dT. This is the 'explanatory form' of the coefficient of expansion. In algebraically simplified form this is

• alpha = `dL / (L0 * `dT).

In this problem we want to find the amount of the expansion. If we understand the concept of the coefficient of expansion, we understand that the amount of the expansion is the product of the coefficient of expansion, the original length and the temperature difference: If we don’t completely understand the idea, or even if we do understand it and want to confirm our understanding, we can solve the formula alpha = `dL / (L0 * `dT) for `dL and plug in our information:

• `dL = alpha * L0 * `dT = .2 * 10^-6 C^(-1) * 2.0 m * 5.0 C = 2 * 10^-6 m.

This is 2 microns, two one-thousandths of a millimeter.

By contrast the coefficient of expansion of steel is 12 * 10^-6 C^(-1); using this coefficient of expansion yields a change in length of 1.2 * 10^-4 m, or 120 microns, which is 60 times as much as for the given alloy.

Your Self-Critique:OK; we did this in EGR.

Your Self-Critique Rating:3

*********************************************

Question: principles of physics and general college physics 13.8: coeff of expansion .2 * 10^-6 C^-1, length 2.0 m. What is expansion along length if temp increases by 5.0 C?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

The soln is the coefficient*L_0*`dT = .2E-6 m/(degree C * m) *2m*5degrees C = 2 E-6m

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

This problem is solved using the concept of a coefficient of expansion.

The linear coefficient of thermal expansion of a material, denoted alpha, is the amount of expansion per unit of length, per unit of temperature:

• expansion per unit of length is just (change in length) / (original length), i.e.,

• Expansion per unit of length = `dL / L0

Thus expansion per unit of length, per unit of temperature is (expansion per unit of length) / `dT. Denoting this quantity alpha we have

• alpha = (`dL / L0) / `dT. This is the 'explanatory form' of the coefficient of expansion. In algebraically simplified form this is

• alpha = `dL / (L0 * `dT).

In this problem we want to find the amount of the expansion. If we understand the concept of the coefficient of expansion, we understand that the amount of the expansion is the product of the coefficient of expansion, the original length and the temperature difference: If we don’t completely understand the idea, or even if we do understand it and want to confirm our understanding, we can solve the formula alpha = `dL / (L0 * `dT) for `dL and plug in our information:

• `dL = alpha * L0 * `dT = .2 * 10^-6 C^(-1) * 2.0 m * 5.0 C = 2 * 10^-6 m.

This is 2 microns, two one-thousandths of a millimeter.

By contrast the coefficient of expansion of steel is 12 * 10^-6 C^(-1); using this coefficient of expansion yields a change in length of 1.2 * 10^-4 m, or 120 microns, which is 60 times as much as for the given alloy.

Your Self-Critique:OK; we did this in EGR.

Your Self-Critique Rating:3

#*&!

*********************************************

Question: principles of physics and general college physics 13.8: coeff of expansion .2 * 10^-6 C^-1, length 2.0 m. What is expansion along length if temp increases by 5.0 C?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

The soln is the coefficient*L_0*`dT = .2E-6 m/(degree C * m) *2m*5degrees C = 2 E-6m

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

This problem is solved using the concept of a coefficient of expansion.

The linear coefficient of thermal expansion of a material, denoted alpha, is the amount of expansion per unit of length, per unit of temperature:

• expansion per unit of length is just (change in length) / (original length), i.e.,

• Expansion per unit of length = `dL / L0

Thus expansion per unit of length, per unit of temperature is (expansion per unit of length) / `dT. Denoting this quantity alpha we have

• alpha = (`dL / L0) / `dT. This is the 'explanatory form' of the coefficient of expansion. In algebraically simplified form this is

• alpha = `dL / (L0 * `dT).

In this problem we want to find the amount of the expansion. If we understand the concept of the coefficient of expansion, we understand that the amount of the expansion is the product of the coefficient of expansion, the original length and the temperature difference: If we don’t completely understand the idea, or even if we do understand it and want to confirm our understanding, we can solve the formula alpha = `dL / (L0 * `dT) for `dL and plug in our information:

• `dL = alpha * L0 * `dT = .2 * 10^-6 C^(-1) * 2.0 m * 5.0 C = 2 * 10^-6 m.

This is 2 microns, two one-thousandths of a millimeter.

By contrast the coefficient of expansion of steel is 12 * 10^-6 C^(-1); using this coefficient of expansion yields a change in length of 1.2 * 10^-4 m, or 120 microns, which is 60 times as much as for the given alloy.

Your Self-Critique:OK; we did this in EGR.

Your Self-Critique Rating:3

#*&!#*&!

&#Very good responses. Let me know if you have questions. &#