#$&* course Mth 277 6/15 1 pm qa 09_2
.............................................
Given Solution: The distance between the point (x, y, z) and the point (3, -4, 2) is sqrt((3 - x)^2 + (-4 - y)^2 + (2 - z)^2) = sqrt( (x - 3)^2 + (y + 4)^2 + (z - 2)^2). This distance is 5 if and only if sqrt( (x - 3)^2 + (y + 4)^2 + (z - 2)^2). = 5. Squaring both sides we obtain (x - 3)^2 + (y + 4)^2 + (z - 2)^2) = 25. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q002. Using the equation from the preceding, find the value of y if we know that x = 2 and z = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: From the problem above: (3-x)^2 + (-4-y)^2 + (2-z)^2 = 25 (3-2)^2 + (-4-y)^2 + (2-1)^2 = 25 (-4-y)^2 + 2 = 25 (-4-y)^2 = 23 -4-y = sqrt(23) 4+y = -sqrt(23) y = -sqrt(23)-4 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ If x = 2 and z = 1 then our equation (x - 3)^2 + (y + 4)^2 + (z - 2)^2) = 25 becomes (2 - 3)^2 + (y + 4)^2 + (1 - 2)^2) = 25, or 1 + (y+4)^2 + 1 = 25 so that (y + 4)^2 = 23 and (y + 4) = +- sqrt(23). Solving for y we get y = sqrt(23) - 4 or y = -sqrt(23) - 4.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Include +/- next time when dealing with square roots. ------------------------------------------------ Self-critique rating: ********************************************* Question: `q003. Using the equation from the first question, substitute z = 0. The resulting equation describes a circle. What are its center and radius? Answer the same questions if you substitute z = 1 rather than z = 0. Answer the same questions if you substitute z = -1 rather than z = 0. Answer the same questions if you substitute z = -4 rather than z = 0. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (3-x)^2 + (-4-y)^2 + (2-z)^2 = 25 If z = 0: (3-x)^2 + (-4-y)^2 + 4 = 25 (x-3)^2 + (y+4)^2 = 21 The radius of the circle is sqrt(21) units, and the center is located at (3,-4). If z = 1: (x-3)^2 + (y+4)^2 + 1 = 25 (x-3)^2 + (y+4)^2 = 24 The radius of the circle is sqrt(24) units, and the center is located at (3, -4). If z = -1: (x-3)^2 + (y+4)^2 + 9 = 25 (x-3)^2 + (y+4)^2 = 16 The radius of the circle is 4 units, and the center is located at (3,-4). If z = -4: (x-3)^2 + (y+4)^2 + 36 = 25 (x-3)^2 + (y+4)^2 = -11 This circle cannot exist, since it has a negative radius. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Our equation is (x - 3)^2 + (y + 4)^2 + (z - 2)^2) = 25. If z = 0 then our equation becomes (x - 3)^2 + (y + 4)^2 + (0 - 2)^2) = 25, which we easily rearrange to get (x - 3)^2 + (y + 4)^2 = 21. This is the equation of a circle in the x-y plane centered at (3, -4) and having radius sqrt(21), which is roughly 4.6. If z = 1 then (z - 2)^2 becomes 1 and our equation becomes (x - 3)^2 + (y + 4)^2 = 24. This is the equation of a circle in the x-y plane centered at (3, -4) and having radius sqrt(24), which is roughly 4.9. If z = -1 we get a circle of radius 6, centered at (3, -4). If z = -4 we get the equation (x-3)^2 + (y+4)^2 = -11. Since squares can't be negative, there is no real-number solution for (x, y), and there will be no z = -4 point on this graph. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q004. Expand the equation you obtained in the first question by multiplying out the squares. Simplify into standard form, with all numbers and variable on the left and 0 on the right-hand side of the equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (3-x)^2 + (-4-y)^2 + (2-z)^2 = 25 becomes: 9 - 6x + x^2 + 16 - 8y + y^2 + 4 - 2z + z^2 = 25 x^2 - 6x + y^2 - 8y + z^2 - 2z + 29 = 25 x^2 - 6x + y^2 - 8y + z^2 - 2z - 4 = 0 Confidence rating: 3
.............................................
Given Solution: The equation (x - 3)^2 + (y + 4)^2 + (z - 2)^2) = 25 becomes x^2 - 6 x + 9 + y^2 + 8 y + 16 + z^2 - 4 z + 4 = 25 which in standard form is x^2 - 6 x + y^2 + 8 y + z^2 - 4 z - 13 = 0. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I'm not sure what I did wrong...
.............................................
Given Solution: The vector 8 `i - 4 `j + 5 `k is a multiple of the vector 4 `i + 2 `j - 5/2 `k if, and only if, there exists a constant c such that 8 `i - 4 `j + 5 `k = c ( 4 `i + 2 `j - 5/2 `k ). Setting the `i, `j and `k components of the left-hand side respectively equal to the same components of the right-hand side we get the three equations 8 = 4 c -4 = 2 c 5 = -5/2 c The first yields solution c = 2. The last two yield solution c = -2. c can't take both values at the same time, so the equations are not simultaneously true. It follows that neither vector is a multiple of the other. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q006. How does your answer to the preceding determine whether or not the two vectors are parallel? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: If a vector is a multiple of another, the two vectors are parallel.
.............................................
Given Solution: Two vectors are parallel if, and only if, one is a multiple of the other. So the solution to the preceding shows that neither vector is a multiple of the other. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q007. What are the lengths of the sides of the triangle whose vertices are (4, 3 -2), (5, -1, 3) and (6, 4, 1)? Sketch a triangle, with its sides in the same proportion (as best you can in a few minutes without meticulously measuring everything). Based on your sketch does it seem plausible that this is a right triangle? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Based on my sketch, it seems possible that the triangle with vertices given could be a right triangle, based on the angle formed at vertex (4,3,-2). However, the third dimension doesn't matter all that much since we're dealing with a 2D triangle.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:"